精英家教网 > 高中数学 > 题目详情

根据概念得共轭双曲线方程,半焦距得焦点所在的圆的方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知点所成的比为2,是平面上一动点,且满足.(1)求点的轨迹对应的方程;(2) 已知点在曲线上,过点作曲线的两条弦,且直线的斜率满足,试推断:动直线有何变化规律,证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线与椭圆有共同的焦点,点是双曲线的渐近线与椭圆的一个交点,求双曲线与椭圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

O为坐标原点, 两点分别在射线 上移动,且,动点P满足,
记点P的轨迹为C.
(I)求的值;
(II)求P点的轨迹C的方程,并说明它表示怎样的曲线?
(III)设点G(-1,0),若直线与曲线C交于M、N两点,且M、N两点都在以G为圆心的圆上,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

垂直于x轴的直线交双曲线=1右支于M,N两点,A1,A2为双曲线的左右两个顶点,求直线A1M与A2N的交点P的轨迹方程,并指出轨迹的形状.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知分别是椭圆的左右焦点,其左准线与轴相交于点N,并且满足,设A、B是上半椭圆上满足的两点,其中.(1)求此椭圆的方程;(2)求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知A、B两点的坐标分别是(-1,0)、(1,0),直线相交于点,且它们的斜率之积为,求点的轨迹方程并判断轨迹形状。

查看答案和解析>>

同步练习册答案