如图,正三棱柱所有棱长都是2,D棱AC的中点,E是棱的中点,AE交于点H.
(1)求证:平面;
(2)求二面角的余弦值;
(3)求点到平面的距离.
(1)参考解析;(2) ;(3)
【解析】
试题分析:(1)由正三棱柱,可得平面ACB⊥平面.又DB⊥AC.所以如图建立空间直角坐标系.分别点A,E,B,D, 的坐标,得出相应的向量.即可得到向量AE与向量BD,向量的数量积为零.即可得直线平面.
(2)由平面,平面分别求出这两个平面的法向量,根据法向量的夹角得到二面角的余弦值(根据图形取锐角).
(3)点到平面的距离,转化为直线与法向量的关系,再通过解三角形的知识即可得点到平面的距离.本小题关键是应用解三角形的知识.
试题解析:(1)证明:建立如图所示,
∵
∴ 即AE⊥A1D, AE⊥BD
∴AE⊥面A1BD
(2)由 ∴取
设面AA1B的法向量为 ,
由图可知二面角D—BA1—A的余弦值为
(3),平面A1BD的法向量取
则B1到平面A1BD的距离d=
考点:1.空间坐标系的建立.2.线面垂直的证明.4.二面角的求法.5.点到平面的距离公式.
科目:高中数学 来源:2013-2014学年江西省南昌市高三第二次模拟考试理科数学试卷(解析版) 题型:选择题
已知函数的最小正周期为,为了得到函数的图象,只要将的图象( )
A.向左平移个单位长度 B.向右平移个单位长度
C.向左平移个单位长度 D.向右平移个单位长度
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江西省高三联合考试理科数学试卷(解析版) 题型:选择题
已知数列,若点均在直线上,则数列的前9项和等于( )
A.18 B.20 C.22 D.24
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江西省高三联合考试文科数学试卷(解析版) 题型:选择题
如图,把周长为1的圆的圆心C放在y轴上,顶点A(0,1),一动点M从A开始逆时针绕圆运动一周,记弧AM=x,直线AM与x轴交于点N(t,0),则函数的图像大致为( )
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江西省高三联合考试文科数学试卷(解析版) 题型:选择题
月底,某商场想通过抽取发票的10%来估计该月的销售额,先将该月的全部销售发票存根进行了编号:1,2,3,…,然后拟采用系统抽样的方法获取一个样本.若从编号为1,2,…,10的前10张发票存根中随机抽取一张,然后再按系统抽样的方法依编号逐次产生第二张、第三张、第四张、…,则抽样中产生的第二张已编号的发票存根,其编号不可能是( )
A.19 B.17 C.23 D.13
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江西省上饶市高三第二次模拟考试理科数学试卷(解析版) 题型:填空题
(坐标系与参数方程选做题)在极坐标系中,曲线与的交点的极坐标为_________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江西省上饶市高三第二次模拟考试理科数学试卷(解析版) 题型:选择题
设点是区域内的随机点,函数在区间上是增函数的概率为 ( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年江苏省连云港市高三3月第二次调研考试理科数学试卷(解析版) 题型:解答题
如图,在平面直角坐标系中,已知,,是椭圆上不同的三点,,,在第三象限,线段的中点在直线上.
(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点在椭圆上(异于点,,)且直线PB,PC分别交直线OA于,两点,证明为定值并求出该定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com