精英家教网 > 高中数学 > 题目详情

【题目】如图,在各棱长为的直四棱柱中,底面为棱形, 为棱上一点,且

(1)求证:平面平面

(2)平面将四棱柱分成上、下两部分,求这两部分的体积之比.

(棱台的体积公式为,其中分别为上、下底面面积, 为棱台的高)

【答案】(1)证明见解析;(2).

【解析】试题分析:(1)利用直线垂直平面的判定及面面垂直的判定定理,分析出平面 平面平面平面(2)平面分割出一个三棱台,先求其体积,再用总的体积减去此三棱台体积,即可得到下面部分的体积.

试题解析:(1)证明: 底面为菱形,

在直四棱柱中, 底面

平面

平面平面平面

(2)解:连接,过,则

则平面与侧面相交的线段为

故平面将四棱柱分成上、下两部分中的上部分由三棱台组成,

的中点,连接

底面为菱形,

为正三角形,即也为正三角形,

底面

平面

又四棱柱的体积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在区间上的最大值;

(2)若在区间上,函数的图象恒在直线下方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《续古摘奇算法》(杨辉)一书中有关于三阶幻方的问题:将1,2,3,4,5,6,7,8,9分别填入的方格中,使得每一行,每一列及对角线上的三个数的和都相等,我们规定:只要两个幻方的对应位置(如每行第一列的方格)中的数字不全相同,就称为不同的幻方,那么所有不同的三阶幻方的个数是( )

8

3

4

1

5

9

6

7

2

A. 9 B. 8 C. 6 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该定价按事先拟定的价格进行试销,得到如下数据:

单价(元)

8

8.2

8.4

8.6

8.8

9

销量(元)

90

84

83

80

75

68

(1)求回归直线方程

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修45:不等式选讲)

已知函数

(1)若不等式的解集为,求的值;

(2)若对,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过左焦点且垂直于长轴的弦长为

(1)求椭圆的标准方程;

(2)点为椭圆的长轴上的一个动点,过点且斜率为的直线交椭圆两点,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项都是正数的数列的前项和为

1求数列的通项公式;

2设数列满足:,数列的前项和,求证:

3对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着互联网的发展,移动支付(又称手机支付)越来越普通,某学校兴趣小组为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有个人.把这个人按照年龄分成5组:第1组,第2组,第3组,第4组,第5组,然后绘制成如图所示的频率分布直方图.其中,第一组的频数为20.

(1)求的值,并根据频率分布直方图估计这组数据的众数;

(2)从第1,3,4组中用分层抽样的方法抽取6人,求第1,3,4组抽取的人数;

(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方形,点分别中点,将分别沿起,使两点重合于.

求证

二面角余弦值.

查看答案和解析>>

同步练习册答案