精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线y2=2px(p>0)的焦点为F,过F且与x轴垂直的直线交该抛物线于AB两点,|AB|=4.

(1)求抛物线的方程;

(2)过点F的直线l交抛物线于PQ两点,若△OPQ的面积为4,求直线l的斜率(其中O为坐标原点).

【答案】(1);(2).

【解析】

(1)根据抛物线的定义以及抛物线通径的性质可得从而可得结果(2)设直线的方程为代入利用弦长公式结合韦达定理可得的由点到直线的距离公式,根据三角形面积公式可得从而可得结果.

(1)由抛物线的定义得到准线的距离都是p

所以|AB|=2p=4,

所以抛物线的方程为y2=4x

(2)设直线l的方程为yk(x-1),P(x1y1),Q(x2y2).

因为直线l与抛物线有两个交点,

所以k≠0,得,代入y2=4x,得,且恒成立,

y1y2=-4,

所以

又点O到直线l的距离

所以,解得,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2) 为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论正确的是( ).

A.互为共轭复数的充分不必要条件

B.如图,在复平面内,若复数对应的向量分别是,则复数对应的点的坐标为

C.若函数恰在上单调递减,则实数的值为4

D.函数在点处的切线方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若在点处的切线为,求的值;

(2)求的单调区间;

(3)若,求证:在时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数上单调递增,求实数的取值范围;

(Ⅱ)若函数的图象与直线交于两点,线段中点的横坐标为,证明:为函数的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的左、右焦点分别为F1F2,离心率为,点A在椭圆E上,∠F1AF260°,△F1AF2的面积为4.

(1)求椭圆E的方程;

(2)过原点O的两条互相垂直的射线与椭圆E分别交于PQ两点,证明:点O到直线PQ的距离为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面是菱形,底面上的任意一点.

(1)求证:平面平面

(2)设,是否存在点使平面与平面所成的锐二面角的大小为?如果存在,求出点的位置,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,圆轴正半轴交于点, 圆在点处的切线被椭圆截得的弦长为.

(1)求椭圆的方程;

(2)设圆上任意一点处的切线交椭圆于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的右焦点,过点的直线交椭圆于两点. 的中点,直线与直线交于点.

(Ⅰ)求征:

(Ⅱ)求四边形面积的最小值.

查看答案和解析>>

同步练习册答案