精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=ax3+bx23xx=﹣1x3处取得极值.

1)求ab的值

2)求fx)在[44]内的最值.

【答案】1ab=﹣12fxminfxmax

【解析】

1)先对函数求导,由题意可得3ax2+2bx30的两个根为﹣13,结合方程的根与系数关系可求,

2)由(1)可求,然后结合导数可判断函数的单调性,进而可求函数的最值.

解:(13ax2+2bx3

由题意可得3ax2+2bx30的两个根为﹣13

解可得ab=-1

2)由(1

易得fx)在单调递增,在上单调递减,

f(﹣4f(﹣1f3)=﹣9f4

所以fxminf(﹣4fxmaxf(﹣1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,其中.

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为8,其短轴的两个端点与长轴的一个端点构成正三角形。

(1)求的方程;

(2)设的左焦点,为直线上任意一点,过点的垂线交于两点,.

(i)证明:平分线段(其中为坐标原点);

(ii)当取最小值时,求点的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆W:的左焦点作直线交椭圆于两点,其中 ,另一条过的直线交椭圆于两点(不与重合),且点不与点重合.轴的垂线分别交直线,.

(Ⅰ)求点坐标和直线的方程;

(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某日A, B, C三个城市18个销售点的小麦价格如下表:

销售点序号

所属城市

小麦价格(元/吨)

销售点序号

所属城市

小麦价格(元/吨)

1

A

2420

10

B

2500

2

C

2580

11

A

2460

3

C

2470

12

A

2460

4

C

2540

13

A

2500

5

A

2430

14

B

2500

6

C

2400

15

B

2450

7

A

2440

16

B

2460

8

B

2500

17

A

2460

9

A

2440

18

A

2540

(Ⅰ)求B市5个销售点小麦价格的中位数

(Ⅱ)甲从B市的销售点中随机挑选一个购买1吨小麦,乙从C市的销售点中随机挑选一个购买1吨小麦,求甲花费的费用比乙高的概率

(Ⅲ)如果一个城市的销售点小麦价格方差越大,则称其价格差异性越大.请你对A、B、C三个城市按照小麦价格差异性从大到小进行排序(只写出结果).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某销售公司拟招聘一名产品推销员,有如下两种工资方案:

方案一:每月底薪2000元,每销售一件产品提成15元;

方案二:每月底薪3500元,月销售量不超过300件,没有提成,超过300件的部分每件提成30元.

(1)分别写出两种方案中推销员的月工资(单位:元)与月销售产品件数的函数关系式;

(2)从该销售公司随机选取一名推销员,对他(或她)过去两年的销售情况进行统计,得到如下统计表:

月销售产品件数

300

400

500

600

700

次数

2

4

9

5

4

把频率视为概率,分别求两种方案推销员的月工资超过11090元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnxx2+axg(x)=exe,其中a0.

(1)若a1,证明:f(x)≤0

(2)用max{mn}表示mn中的较大值,设函数h(x)=max{f(x),g(x)},讨论函数h(x)在(0+∞)上的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数,),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)已知直线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是

1)求图中的值;

2)根据频率分布直方图,估计这200名学生的平均分;

3)若这200名学生的数学成绩中,某些分数段的人数与英语成绩相应分数段的人数之比如表所示,求英语成绩在的人数.

查看答案和解析>>

同步练习册答案