精英家教网 > 高中数学 > 题目详情
17.已知i是虚数单位,若复数z满足(1+i)z=2i,则z的虚部是(  )
A.1B.-1C.-iD.i

分析 由(1+i)z=2i,得$z=\frac{2i}{1+i}$,然后利用复数代数形式的乘除运算化简得答案.

解答 解:由(1+i)z=2i,
得$z=\frac{2i}{1+i}$=$\frac{2i(1-i)}{(1+i)(1-i)}=1+i$,
则z的虚部是:1.
故选:A.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=cos2x+sinxcosx.
(1)求函数f(x)的最大值;
(2)求函数f(x)的单调增区间;
(3)在△ABC中,AB=3,bcosC=ccosB,且角A满足f($\frac{A}{2}$+$\frac{π}{8}$)=$\frac{3\sqrt{2}+5}{10}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.(log23+log227)×(log44+log4$\frac{1}{4}$)的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$y={cos^2}(x-\frac{π}{6})$的一条对称轴为(  )
A.$x=-\frac{π}{6}$B.$x=\frac{5π}{12}$C.$x=\frac{π}{3}$D.$x=-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C的对边分别为a,b,c,且满足$c(\sqrt{3}sinB+cosB)=a+b$.
(Ⅰ)求角C的值;
(Ⅱ)若a=5,△ABC的面积为$5\sqrt{3}$,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)的定义域为D,若对于?a,b,c∈D,f(a),f(b),f(c)分别为某个三角形的边长,则称f(x)为“三角形函数”.给出下列四个函数:
①f(x)=lnx(e2≤x≤e3);②f(x)=4-cosx;③$f(x)={x^{\frac{1}{2}}}(1<x<4)$;④$f(x)=\frac{e^x}{{{e^x}+1}}$.
其中为“三角形函数”的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某校开设的校本课程分别有人文科学、自然科学、艺术体育三个课程类别,每种课程类别开设课程数及学分设定如下表所示:
人文科学类自然科学类艺术体育类
课程门数442
每门课程学分231
学校要求学生在高中三年内从中选修3门课程,假设学生选修每门课程的机会均等.
(Ⅰ)甲至少选1门艺术体育类课程,同时乙至多选1门自然科学类课程的概率为多少?
(Ⅱ)求甲选的3门课程正好是7学分的概率;
(Ⅲ)设甲所选3门课程的学分数为X,写出X的分布列,并求出X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数y=f(x)(x∈R)满足f(x+1)=f(x-1)且x∈[-1,1]时,f(x)=1-x2,函数g(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{-\frac{1}{x},x<0}\end{array}\right.$,则实数h(x)=f(x)-g(x)在区间[-5,5]内零点的个数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知三角形的顶点A(3,4),B(0,0),C(c,2c-6),若∠BAC是钝角,则c的取值范围是($\frac{49}{11}$,+∞)且c≠9.

查看答案和解析>>

同步练习册答案