精英家教网 > 高中数学 > 题目详情

【题目】(2016·云南玉溪一中月考)已知函数,函数g(x)=f(x)-x+1的零点按从小到大的顺序排列成一个数列,该数列的前n项的和为Sn,则S10等于(  )

A. 45 B. 55

C. 210-1 D. 29-1

【答案】A

【解析】x≤0时,g(x)=f(x)-x+1=x,故a1=0;

当0<x≤1时,有-1<x-1≤0,

f(x)=f(x-1)+1=2(x-1)-1+1=2x-2,

g(x)=f(x)-x+1=x-1,故a2=1;

当1<x≤2时,有0<x-1≤1,

f(x)=f(x-1)+1=2(x-1)-2+1=2x-3,

g(x)=f(x)-x+1=x-2,故a3=2;

当2<x≤3时,有1<x-1≤2,

f(x)=f(x-1)+1=2(x-1)-3+1=2x-4,

g(x)=f(x)-x+1=x-3,故a4=3,…,以此类推,

n<xn+1(其中n∈N)时,则f(x)=2x-(n+2),

故数列的前n项构成一个以0为首项,以1为公差的等差数列.

S1045,故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图象与轴相切,且切点在轴的正半轴上.

(1)若函数上的极小值不大于,求的取值范围.

(2)设,证明: 上的最小值为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示正方体ABCDABCD′的棱长为1EF分别是棱AACC′的中点过直线EF的平面分别与棱BBDD′分别交于MN两点BMxx[0,1]给出以下四个结论:

①平面MENF⊥平面BDDB

②直线AC∥平面MENF始终成立;

③四边形MENF周长Lf(x)x[0,1]是单调函数;

④四棱锥CMENF的体积Vh(x)为常数;

以上结论正确的是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系,已知直线的参数方程为 (为参数),曲线的极坐标方程是.

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)设直线与曲线相交于两点,点的中点,点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,过且与轴垂直的弦长为3.

(1)求椭圆的标准方程;

(2)过作直线与椭圆交于两点,问:在轴上是否存在点,使为定值,若存在,请求出点坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数,则的最大值

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8.

(Ⅰ) 求动圆圆心的轨迹C的方程;

(Ⅱ) 已知点B(1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, x轴是的角平分线, 证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学每年暑假举行“学科思维讲座”活动,每场讲座结束时,所有听讲这都要填写一份问卷调查.2017年暑假某一天五场讲座收到的问卷份数情况如下表:

学科

语文

数学

英语

理综

文综

问卷份数

用分层抽样的方法从这一天的所有问卷中抽取份进行统计,结果如下表:

满意

一般

不满意

语文

数学

1

英语

理综

文综

(1)估计这次讲座活动的总体满意率;

(2)求听数学讲座的甲某的调查问卷被选中的概率;

(3)若想从调查问卷被选中且填写不满意的人中再随机选出 人进行家访,求这 人中选择的是理综讲座的人数的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点, 在抛物线上且满足,当取最大值时,点恰好在以 为焦点的双曲线上,则双曲线的离心率为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案