精英家教网 > 高中数学 > 题目详情

如图BC是Rt△ABC的斜边,过A作△ABC所在平面a垂线AP,连PB、PC,过A作AD⊥BC于D,连PD,那么图中直角三角形的个数是


  1. A.
    4个
  2. B.
    6个
  3. C.
    7个
  4. D.
    8个
D
分析:利用AP⊥面ABC,Rt△ABC,AD是PD在面ABC内的射影,故由AD⊥BC可得PD⊥BC.
解答:∵BC是Rt△ABC的斜边,
A作△ABC所在平面a垂线AP,AD⊥BC于D,
图中直角三角形有:
△ABC,△PAB,△PAD,△PAC,△ADB,△ADC,△PDB,△PDC 共8个,
故选D.
点评:本题考查三垂线定理的应用,以及棱锥的结构特征,体现数形结合的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,AB=BC=4,点£在线段AB上.过点E作EF∥BC交AC于点F,将△AEF沿EF折起到△PEF的位置(点A与P重合),使得∠PEB=60°.
(I )求证:EF丄PB;
(II )试问:当点E在线段AB上移动时,二面角P-FC-B的平面角的余弦值是否为定值?若是,求出其定值;若不是,说明理由.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE.
(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由;
(2)若AD、AB的长是方程x2-10x+24=0的两个根,求直角边BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图①,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4;将△BCD沿CD折起,如图②,使得平面BCD⊥平面ACD,连接AB,点F是AB的中点.
(1)求证:DE⊥平面BCD;
(2)在线段DE上是否存在一点G,使FG∥平面BDC?若存在,求出点G的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=(  )
精英家教网
A、
3
2
B、
3
3
C、
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,D是Rt△ABC斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β.

(1)证明sinα+cos2β=0;

(2)若AC=DC,求β的值.

查看答案和解析>>

同步练习册答案