精英家教网 > 高中数学 > 题目详情
已知向量
a
=(x2+y2,xy),
b
=(5,2).若
a
=
b
,求x,y的值.
分析:由题意知本题是以向量相等为条件,根据向量相等的充要条件得到关于x,y的方程组,解方程组得到结果,注意本题一共有四组解,不要漏解.
解答:解∵:向量
a
=(x2+y2,xy),
b
=(5,2),
a
=
b

∴x2+y2=5,xy=2,
∴x=2,y=1,
x=-2,y=-1,
x=1,y=2,
x=-1,y=-2
点评:通过向量的坐标表示实现向量问题代数化,注意与方程、函数等知识的联系,一般的向量问题的处理有两种思路,一种是纯向量式的,另一种是坐标式,两者互相补充.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(x2,x+1),
b
=(1-x,t),若函数f(x)=
a
b
在区间(-1,1)上是增函数,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(ex+
x
2
,-x)
b
=(1,t)
,若函数f(x)=
a
b
在区间(-1,1)上存在单调递增区间,则t的取值范围是
(-∞,e+
1
2
(-∞,e+
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(x2-1,-1),
b
=(x,y),当|x|<
2
时,有
a
b
;当|x|≥
2
时,
a
b

(1)求函数y=f(x)的解析式;
(2)求函数y=f(x)的单调递减区间;
(3)若对|x|≥
2
,都有f(x)≤m,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(
x
2
+
π
12
),  cos
x
2
)
b
=(cos(
x
2
+
π
12
),  -cos
x
2
)
x∈[
π
2
,  π]
,函数f(x)=
a
b

(1)若cosx=-
3
5
,求函数f(x)的值;
(2)若函数f(x)的图象关于直线x=x0对称,且x0∈(-2,-1),求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区模拟)已知向量
a
=(x2,x+1),
b
=(1-x,t),若函数f(x)=
a
b
在区间(-1,1)上是增函数,则实数t的取值范围是(  )

查看答案和解析>>

同步练习册答案