精英家教网 > 高中数学 > 题目详情

【题目】函数f′(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x<0时,xf′(x)+f(x)>0,则使得f(x)<0成立的x的取值范围是(  )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)

【答案】B
【解析】解:设g(x)=xf(x),则g′(x)=xf′(x)+f(x),
∵当x<0时,xf′(x)+f(x)>0,
∴则当x<0时,g′(x)>0,
∴函数g(x)=xf(x)在(﹣∞,0)上为增函数,
∵函数f(x)是奇函数,∴g(﹣x)=(﹣x)f(﹣x)=(﹣x)[﹣f(x)]=xf(x)=g(x),
∴函数g(x)为定义域上的偶函数,
由f(1)=0得,g(1)=0,函数g(x)的图象大致如右图:
∵不等式f(x)<0<0,

由函数的图象得,﹣1<x<0或x>1,
∴使得f(x)<0成立的x的取值范围是:(﹣1,0)∪(1,+∞),
故选:B.

根据题意构造函数g(x)=xf(x),由求导公式和法则求出g′(x),结合条件判断出g′(x)的符号,即可得到函数g(x)的单调区间,根据f(x)奇函数判断出
g(x)是偶函数,将不等式进行转化,由图象求出不等式成立时x的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知分别为椭圆C:的左、右焦点,点在椭圆C上.

(1)求的最小值;

(2)已知直线l与椭圆C交于两点AB,过点且平行于直线l的直线交椭圆C于另一点Q,问:四边形PABQ能否成为平行四边形?若能,请求出直线l的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二次函数f(x)=ax2+bx+c(a,b∈R)满足条件:①当x∈R时,f(x)的最大值为0,且f(x﹣1)=f(3﹣x)成立;②二次函数f(x)的图象与直线y=﹣2交于A、B两点,且|AB|=4
(Ⅰ)求f(x)的解析式;
(Ⅱ)求最小的实数n(n<﹣1),使得存在实数t,只要当x∈[n,﹣1]时,就有f(x+t)≥2x成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体ABCDPE的底面ABCD是平行四边形,AD=AB=2,=0,PD⊥平面ABCD,EC∥PD,且PD=2EC=2.
(1)若棱AP的中点为H,证明:HE∥平面ABCD;
(2)求二面角A﹣PB﹣E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图的程序图的算法思路中是一种古老而有效的算法﹣﹣辗转相除法,执行改程序框图,若输入的m,n的值分别为30,42,则输出的m=(  )

A.0
B.2
C.3
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,SD=DC=2AD,侧棱SD⊥底面ABCD,点E是SC的中点,点F在SB上,且EF⊥SB.
(1)求证:SA∥平面BDE;
(2)求证SB⊥平面DEF;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A﹣{1,2,3,4,5,6,7,8,9),在集合A中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为a,现将组成a的三个数字按从小到大排成的三位数记为I(a),按从大到小排成的三位数记为D(a)(例如a=219,则I(a)=129,D(a)=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个a,则输出b的值为(  )

A.792
B.693
C.594
D.495

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点(2,5)和(8,3)是函数y=﹣k|x﹣a|+b与y=k|x﹣c|+d的图象仅有的两个交点,那么a+b+c+d的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设平面点集A={(x,y)|(x﹣1)2+(y﹣1)2≤1},B={(x,y)|(x+1)2+(y+1)2≤1},C={(x,y)|y﹣≥0},则(A∪B)∩C所表示的平面图形的面积是

查看答案和解析>>

同步练习册答案