精英家教网 > 高中数学 > 题目详情

【题目】已知函数图像上一点处的切线方程为

1)求的值;

2)若方程在区间内有两个不等实根,求的取值范围;

3)令如果的图像与轴交于两点,的中点为,求证:

【答案】1;(2;(3)证明见解析

【解析】

1)根据导数的几何意义可知,利用切线方程求得,代入曲线可得关于的方程,与联立可构造方程组求得结果;(2)将问题转化为的图象在上有两个交点;利用导数得到上的单调性和最值,从而确定有两个交点时的取值范围,进而得到结果;(3)采用反证法,假设,利用上,中点坐标公式和可化简整理得到,令,构造函数,利用导数可知上单调递增,从而得到,与等式矛盾,可知假设不成立,从而证得结论.

由题意得:定义域为

1处的切线方程为:

,解得:

2)方程在区间内有两个不等实根等价于的图象在上有两个交点

由(1)知:

时,;当时,

上单调递增,在上单调递减

,解得:

3,则

假设,则有:

…①;…②;

…③;…④

②得:

由④得: ,即:

,即

,由得:

上单调递增

不成立,即假设不成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;

(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角ABC中,ACBC1,点D是斜边AB上的动点,将BCD沿着CD翻折至B'CD,使得点B'在平面ACD内的射影H恰好落在线段CD上,则翻折后|AB'|的最小值是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断正确的是(

A.两圆锥曲线的离心率分别为,则两圆锥曲线均为椭圆的充要条件.

B.已知为圆内异于圆心的一点,则直线与该圆相交.

C.是实数,若方程表示双曲线,则.

D.命题的否定是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019中秋节期间,高速公路车辆较多,交警部门通过路面监控装置抽样调查某一山区路段汽车行驶速度,采用的方法是:按到达监控点先后顺序,每隔50辆抽取一辆,总共抽取120辆,分别记下其行车速度,将行车速度()分成七段后得到如图所示的频率分布直方图,据图解答下列问题:

1)求的值,并说明交警部门采用的是什么抽样方法?

2)求这120辆车行驶速度的众数和中位数的估计值(精确到0.1);

3)若该路段的车速达到或超过即视为超速行驶,试根据样本估计该路段车辆超速行驶的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数图像上一点处的切线方程为

1)求的值;

2)若方程在区间内有两个不等实根,求的取值范围;

3)令如果的图像与轴交于两点,的中点为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线上,则当点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年年底,某城市地铁交通建设项目已经基本完成,为了解市民对该项目的满意度,分别从不同地铁站点随机抽取若干市民对该项目进行评分(满分),绘制如下频率分布直方图,并将分数从低到高分为四个等级:

满意度评分

低于60

60分到79

80分到89

不低于90

满意度等级

不满意

基本满意

满意

非常满意

已知满意度等级为基本满意的有人.

(1)求频率分布于直方图中的值,及评分等级不满意的人数;

(2)相关部门对项目进行验收,验收的硬性指标是:市民对该项目的满意指数不低于,否则该项目需进行整改,根据你所学的统计知识,判断该项目能否通过验收,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,最小值为4的是(

A. B.

C. D.

查看答案和解析>>

同步练习册答案