精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知曲线(参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,点的极坐标为

(1)将曲线的极坐标方程化为直角坐标方程,并求出点的直角坐标;

(2)设为曲线上的点,求中点到曲线上的点的距离的最小值.

【答案】(1)曲线的直角坐标方程为,点的直角坐标为.(2)

【解析】

1)根据公式,代入得到曲线的直角坐标方程, ,同样根据转化公式,得到点的直角坐标;(2)将两点连线的最小值转化为点到直线的距离,所以根据参数方程和中点坐标公式得到点的坐标,代入点到直线的距离公式,根据三角函数的有界性求距离的最小值.

试题解析:(1),得

故曲线的直角坐标方程为

的直角坐标为

(2)设,故中点

的直线方程为

的距离

中点到曲线上的点的距离的最小值是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】正方体的棱长为2,分别为的中点,则(

A.直线与直线垂直B.直线与平面平行

C.平面截正方体所得的截面面积为D.与点到平面的距离相等

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,都为等腰直角三角形,MAC的中点,且

(1)求二面角PABC的大小;

(2)求直线PM与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,分别记录了31日到35日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日期

31

32

33

34

35

温差

10

11

13

12

8

发芽数y(颗)

23

25

30

26

16

他们所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对选取的2组数据进行检验.

1)求选取的2组数据恰好是相邻2天数据的概率;

2)若选取的是31日与35日的两组数据,请根据32日至34日的数据,求出y关于x的线性回归方程;并预报当温差为时的种子发芽数.

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的坐标原点为极点,轴正半轴为极轴建立极坐标系.已知椭圆的参数方程为为参数),直线的极坐标方程与椭相交于两点.

1)写出直线的普通方程与参数方程:

2)将椭圆的参数方程转化为普通方程,并求弦长的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=xx2+3lnx

)求函数fx)的极值;

)证明:曲线yfx)在直线y2x2的下方(除点外).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=x3+ax29x+1aR),当x≠1时,曲线yfx)在点(x0fx0)和点(2x0f2x0))处的切线总是平行,现过点(﹣2aa2)作曲线yfx)的切线,则可作切线的条数为(  

A..3B..2C.1D..0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知倾斜角为的直线经过点.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出曲线的普通方程;

(2)若直线与曲线有两个不同的交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知个实数若有穷数列由数列的项重新排列而成,且下列条件同时成立:① 个数两两不同;②当时,都成立,则称的一个友数列.

(1)若写出的全部“友数列

(2)已知是通项公式为的数列的一个“友数列,且(用表示);

(3)设求所有使得通项公式为的数列不能成为任何数列的“友数列”的正实数的个数(用表示).

查看答案和解析>>

同步练习册答案