【题目】若抛物线y2=2px上恒有关于直线x+y﹣1=0对称的两点A,B,则p的取值范围是( )
A.(﹣ ,0)
B.(0, )
C.(0, )
D.(﹣∞,0)∪( ,+∞)
科目:高中数学 来源: 题型:
【题目】F1 , F2分别是双曲线 ﹣ =1(a,b>0)的左右焦点,点P在双曲线上,满足 =0,若△PF1F2的内切圆半径与外接圆半径之比为 ,则该双曲线的离心率为( )
A.
B.
C. +1
D. +1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)的离心率为 ,短轴一个端点到右焦点的距离为 . (Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为 ,求△AOB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=2sin(2x+ )的图象为M,则下列结论中正确的是( )
A.图象M关于直线x=﹣ 对称
B.由y=2sin2x的图象向左平移 得到M
C.图象M关于点(﹣ ,0)对称
D.f(x)在区间(﹣ , )上递增
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin2ωx+2 cosωxsinωx+sin(ωx+ )sin(ωx﹣ )(ω>0),且f(x)的最小正周期为π.
(1)求ω的值;
(2)求函数f(x)在区间(0,π)上的单调增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤ ,|φ2|≤ . 命题①:若直线x=φ是函数f(x)和g(x)的对称轴,则直线x= kπ+φ(k∈Z)是函数g(x)的对称轴;
命题②:若点P(φ,0)是函数f(x)和g(x)的对称中心,则点Q( +φ,0)(k∈Z)是函数f(x)的中心对称.( )
A.命题①②都正确
B.命题①②都不正确
C.命题①正确,命题②不正确
D.命题①不正确,命题②正确
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知实数集R,集合A={x|1<x<3},集合B={x|y= },则A∩(RB)=( )
A.{x|1<x≤2}
B.{x|1<x<3}
C.{x|2≤x<3}
D.{x|1<x<2}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义min{a,b}= ,若函数f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在区间[m,n]上的值域为[ , ],则区间[m,n]长度的最大值为( )
A.1
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com