精英家教网 > 高中数学 > 题目详情

【题目】在三棱锥ABCD中,BCD是边长为的等边三角形,,二面角ABCD的大小为θ,且,则三棱锥ABCD体积的最大值为(

A.B.C.D.

【答案】B

【解析】

ABxACy,由余弦定理及基本不等式求出xy的最大值为3,过AAO⊥平面BCD,∠AEO为二面角ABCD的平面角,求出AO的最大值,进而求出三棱锥ABCD体积的最大值.

解:设ABxACy

由余弦定理得:BC2x2+y22xycosx2+y2xyxy,当且仅当xy时取等号,

BC,所以xy≤3

AAO⊥平面BCD平面,则

AEBC,连接OE平面平面,则

∴∠AEO为二面角ABCD的平面角,大小为θ

,所以AE

所以AOAEsinθ

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018年2月9-25日第23届冬奥会在韩国平昌举行.4年后第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:

收看

没收看

男生

60

20

女生

20

20

(Ⅰ)根据上表说明,能否有的把握认为收看开幕式与性别有关?

(Ⅱ)现从参与问卷调查且收看了开幕式的学生中采用按性别分层抽样的方法选取8人参加2022年北京冬奥会志愿者宣传活动.

(ⅰ)问男女学生各选取多少人?

(ⅱ)若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率P.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,

(1)求证:数列是等比数列

(2)求数列的通项公式

(3)设,若对任意,有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数恰有两个不同的零点,则实数的取值范围为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,DEF分别是边中点,下列说法正确的是(

A.

B.

C.,则的投影向量

D.若点P是线段上的动点,且满足,则的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是偶函数,且满足,当时, ,当时, 的最大值为.

(1)求实数的值;

(2)函数,若对任意的,总存在,使不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.

如图,在阳马中,侧棱底面,且,过棱的中点,作于点,连接

)证明:.试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写

出结论);若不是,说明理由;

)若面与面所成二面角的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

(1)求曲线的极坐标方程;

(2)在曲线上取两点 与原点构成,且满足,求面积的最大值.

【答案】(1);(2)

【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线的直角坐标方程为

,消去参数可知曲线是圆心为,半径为的圆,由直线与曲线相切,可得: ;则曲线C的方程为, 再次利用极坐标与直角坐标的互化公式可得

可得曲线C的极坐标方程.

(2)由(1)不妨设M(),,(),

由此可求面积的最大值.

试题解析:(1)由题意可知直线的直角坐标方程为

曲线是圆心为,半径为的圆,直线与曲线相切,可得: ;可知曲线C的方程为

所以曲线C的极坐标方程为

.

(2)由(1)不妨设M(),,(),

时,

所以△MON面积的最大值为.

型】解答
束】
23

【题目】已知函数的定义域为

(1)求实数的取值范围;

(2)设实数的最大值,若实数 满足,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学有学生500人,学校为了解学生课外阅读时间,从中随机抽取了50名学生,收集了他们201810月课外阅读时间(单位:小时)的数据,并将数据进行整理,分为5组:[1012),[1214),[1416),[1618),[1820],得到如图所示的频率分布直方图.

(Ⅰ)试估计该校所有学生中,201810月课外阅读时间不小于16小时的学生人数;

(Ⅱ)已知这50名学生中恰有2名女生的课外阅读时间在[1820],现从课外阅读时间在[1820]的样本对应的学生中随机抽取2人,求至少抽到1名女生的概率;

(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,试估计该校学生201810月课外阅读时间的平均数.

查看答案和解析>>

同步练习册答案