精英家教网 > 高中数学 > 题目详情
函数y=x+
1+x2
的值域为
 
考点:函数的值域
专题:函数的性质及应用
分析:利用放缩法,即可求出函数的值域
解答: 解:∵y=y=x+
1+x2
>x+
x2
=x+|x|≥0
∴值域为(0,+∞)
故答案为:(0,+∞)
点评:本题考查了函数的值域的求法,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥O-ABC的顶点O(0,0,0),A,B,C三点分别在x轴、y轴、z轴上,且|OA|=2|OB|=3|OC|=6,求AC边长的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,∠A=90°,D是AC上一点,E是BC上一点,若AB=
1
2
BD,CE=
1
2
EB,∠BDE=120°,CD=3,则BC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x+
π
6
)-cosx
(1)求f(
3
)的值;
(2)在△ABC中,若A∈(0,
π
2
),f(A+
3
)=
3
5
,f(B-
π
3
)=-
4
5
,试求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(0,+∞)上的增函数,且对任意的x>0,y>0都满足f(
x
y
)=f(x)-f(y).
(1)求f(1)的值;
(2)若x>0,证明f(x2)=2f(x);
(3)若f(3)=1,解不等式f(x+3)-f(
1
x-1
)<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(0,sinx),
b
=(1,2cosx),函数f(x)=
3
2
a
b
,g(x)=
a
2+
b
2-
7
2
,则f(x)的图象可由g(x)的图象经过怎样的变换得到(  )
A、向左平移
π
4
个单位长度
B、向右平移
π
4
个单位长度
C、向左平移
π
2
个单位长度
D、向右平移
π
2
个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:
m
=(2cosωx,sinωx),
n
=(sin(ωx+
π
2
),2
3
cosωx),且f(x)=
m
n
+t-1,若f(x)的图象上两个最高点的距离为3π,且当0<x<π时,函数f(x)的最小值为0.求表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=1,an-an-1=2n-1,(n≥2).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=n(an+1),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x)是以π为最小正周期的周期函数,且当x∈[0,
π
2
]时,f(x)=sinx,则f(
3
)的值为(  )
A、-
1
2
B、
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

同步练习册答案