精英家教网 > 高中数学 > 题目详情
已知f(x)=(1+2x)m+(1+4x)n(m,n∈N*)的展开式中含x项的系数为36,求展开式中含x2项的系数最小值,及m,n值.
【答案】分析:展开式中含x2项的系数是关于m,n的关系式,由展开式中含x项的系数为36,可得2m+4n=36,从而转化为关于m或n的二次函数求解.
解答:解:∵f(x)=(1+2x)m+(1+4x)n展开式中含x的项为•2x+•4x=(2m+4n)x,
∵f(x)=(1+2x)m+(1+4x)n(m,n∈N*)的展开式中含x项的系数为36,
∴m+2n=18,
∴f(x)=(1+2x)m+(1+4x)n展开式中含x2的项的系数为t=•22+•42=2m2-2m+8n2-8n,
∵m+2n=18,
∴m=18-2n,
∴t=2(18-2n)2-2(18-2n)+8n2-8n=16n2-148n+612
=16(n2-n+),
∴当n=时,t取最小值,但n∈N*
∴n=5时t最小,即x2项的系数最小,最小值为272,此时n=5,m=8.
点评:本题考查二项式系数的性质,求得m+2n=18是解决问题的关键,考查二次函数的性质,考查配方法与分析、转化与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ln(1+x)-
x1+ax
(a>0).
(I) 若f(x)在(0,+∞)内为单调增函数,求a的取值范围;
(II) 若函数f(x)在x=O处取得极小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=a-
2
2x+1
是定义在R上的奇函数,则f-1(-
3
5
)的值是(  )
A、
3
5
B、-2
C、
1
2
D、
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

16、已知f(x)=asin2x+btanx+1,且f(-2)=4,那么f(π+2)=
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=xlnx
(1)求函数f(x)的单调区间;
(2)求函数f(x)在[t,t+2](t>0)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(x2+1)(x+a)
(1)当x∈(0,+∞)时,函数y=f(x)的图象上任意一点的切线斜率恒大于1,求a的取值范围.
(2)若y=f(x)在x∈(0,+∞)上有极值点,求a的取值范围.

查看答案和解析>>

同步练习册答案