【题目】已知数列,若对任意的,,,存在正数使得,则称数列具有守恒性质,其中最小的称为数列的守恒数,记为.
(1)若数列是等差数列且公差为,前项和记为.
①证明:数列具有守恒性质,并求出其守恒数.
②数列是否具有守恒性质?并说明理由.
(2)若首项为1且公比不为1的正项等比数列具有守恒性质,且,求公比值的集合.
【答案】(1)①见解析,.②数列不具有守恒性质.见解析(2)
【解析】
(1)①运用等差数列的通项公式和数列具有守恒性质可得结论;
②数列不具有守恒性质,运用等差数列的求和公式和不等式的性质可得结论;
(2)讨论,,由等比数列的通项公式和不等式的性质,构造数列,运用单调性,即可得到所求范围.
解:(1)①因为是等差数列且公差为,所以,
所以对任意,,
恒成立,
所以数列具有守恒性质,且守恒数.
②假设数列具有守恒性质,因为,所以存在实数,
.
若,则当时,,矛盾;
若,则当时,,矛盾.
所以数列不具有守恒性质.
(2)显然且,因为,所以.
因为数列具有守恒性质,
所以对任意,,存在正数使得,
即存在正数,对任,都成立.
(i)若,等比数列递增,不妨设,则,
即,
设,由式中的,任意性可知,数列不递增,
所以对任意恒成立.
而当,,
所以不符题意.
(ii)若,则数列单调递减,不妨设,则,
即,
设,由式中的,任意性可知,数列不递减,
所以对任意恒成立,
所以对任意恒成立,
显然,当,时,单调递减,
所以当时,取得最大值,
所以.
又,故,即.
综上所述,公比的取值集合为.
科目:高中数学 来源: 题型:
【题目】已知椭圆:经过点,右焦点到直线的距离为.
(1)求椭圆的标准方程;
(2)定义为,两点所在直线的斜率,若四边形为椭圆的内接四边形,且,相交于原点,且,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:给定整数i,如果非空集合满足如下3个条件:
①;②;③,若,则.
则称集合A为“减i集”
(1)是否为“减0集”?是否为“减1集”?
(2)证明:不存在“减2集”;
(3)是否存在“减1集”?如果存在,求出所有“减1集”;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,且椭圆上存在一点,满足.
(1)求椭圆的标准方程;
(2)过椭圆右焦点的直线与椭圆交于不同的两点,求的内切圆的半径的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆()的离心率是,点在短轴上,且。
(1)球椭圆的方程;
(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线ax+by=1与圆x2+y2=1相交于A,B两点(其中a,b是实数),且△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(0,1)之间距离的最小值为( ).
A.0B.C.-1D.+1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学根据学生的兴趣爱好,分别创建了“书法”、“诗词”、“理学”三个社团,据资料统计新生通过考核选拔进入这三个社团成功与否相互独立.2015年某新生入学,假设他通过考核选拔进入该校的“书法”、“诗词”、“理学”三个社团的概率依次为、、,己知三个社团他都能进入的概率为,至少进入一个社团的概率为,且.
(1)求与的值;
(2)该校根据三个社团活动安排情况,对进入“书法”社的同学增加校本选修学分1分,对进入“诗词”社的同学增加校本选修学分2分,对进入“理学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课学分分数不低于4分的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com