精英家教网 > 高中数学 > 题目详情

【题目】已知函数

)求的值域

)若对于内的所有实数,不等式恒成立,求实数的取值范围.

【答案】(1);(2)

【解析】

试题分析:

)由对勾函数的性质可知上是减函数,在上是增函数,据此计算可得的值域

原问题即,对于恒成立,

,则的图象开口向上,对称轴为据此分类讨论有:

①当时,此时

②当时,此时无解;

③当时,此时

综上可得实数的取值范围为:

试题解析:

上是减函数,在上是增函数,

的值域

)对于内的所有实数,不等式恒成立等价于,对于恒成立,

,则

的图象为抛物线,开口向上,对称轴为

①当时,上单调递增,

解得

②当时,上单调递减,在上单调递增,

,解得

无解;

③当时,上单调递减,

解得

综上所述,实数的取值范围为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】当曲线与直线有两个相异的交点时,实数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,曲线上任意一点满足;曲线上的点轴的右边且的距离与它到轴的距离的差为1.

(1)求的方程;

(2)过的直线相交于点,直线分别与相交于点.求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为加快新能源汽车产业发展,推进节能减排,国家鼓励消费者购买新能源汽车.某校研究性学习小组从汽车市场上随机选取了M辆纯电动乘用车.根据其续驶里程R(单次充电后能行驶的最大里程)作出了频率与频数的统计表:

分组

频数

频率

80≤R<150

10

150≤R<250

30

x

R≥250

y

z

合计

M

1

(1)求x,y,z,M的值;

(2)若用分层抽样的方法从这M辆纯电动乘用车中抽取一个容量为6的样本,从该样本中任选2辆,求选到的2辆车续驶里程为150≤R<250的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知抛物线的焦点为,准线与轴的交点为,过点的直线,抛物线相交于不同的两点.

(1)若,求直线的方程;

(2)若点在以为直径的圆外部,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点的动直线与抛物线 相交于 两点.当直线的斜率是时, .

(1)求抛物线的方程;

(2)设线段的中垂线在轴上的截距为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数x,y满足方程x2+y2-4x+1=0.

(1)求的最大值和最小值;

(2)求y-x的最大值和最小值;

(3)求x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx.
(1)求函数f(x)的图象在x=1处的切线方程;
(2)若函数y=f(x)+ 在[ ,+∞)上有两个不同的零点,求实数k的取值范围;
(3)是否存在实数k,使得对任意的x∈( ,+∞),都有函数y=f(x)+ 的图象在g(x)= 的图象的下方;若存在,请求出最大整数k的值,若不存在,请说明理由(参考数据:ln2=0.6931, =1.6487).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(logax)= ,(0<a<1)
(1)求f(x)的表达式,并判断f(x)的奇偶性;
(2)判断f(x)的单调性;
(3)对于f(x),当x∈(﹣1,1)时,恒有f(1﹣m)+f(1﹣m2)<0,求m的取值范围.

查看答案和解析>>

同步练习册答案