【题目】在数列{ }中,已知,,,则等于( )
A. B. C. D.
【答案】B
【解析】
将数列的等式关系两边取倒数是公差为的等差数列,再根据等差数列求和公式得到数列通项,再取倒数即可得到数列{}的通项.
将等式两边取倒数得到,是公差为的等差数列,=,根据等差数列的通项公式的求法得到,故=.
故答案为:B.
【点睛】
这个题目考查的是数列通项公式的求法,数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;还有构造新数列的方法,取倒数,取对数的方法等等.
【题型】单选题
【结束】
9
【题目】在如图所示的锐角三角形空地中, 欲建一个面积不小于300m2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是 ( )
(A) [15,20](B) [12,25] (C) [10,30](D) [20,30]
科目:高中数学 来源: 题型:
【题目】已知圆锥曲线的两个焦点坐标是,且离心率为;
(1)求曲线的方程;
(2)设曲线表示曲线的轴左边部分,若直线与曲线相交于两点,求的取值范围;
(3)在条件(2)下,如果,且曲线上存在点,使,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产的某批产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足P= (其中0≤x≤a,a为正常数).已知生产该产品还需投入成本6(P+ )万元(不含促销费用),产品的销售价格定为(4+ )元/件.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,该公司的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 且(Sn﹣1)2=anSn(n∈N*).
(1)求S1 , S2 , S3的值;
(2)求出Sn及数列{an}的通项公式;
(3)设bn=(﹣1)n﹣1(n+1)2anan+1(n∈N*),求数列{bn}的前n项和为Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线x2﹣ =1(b>0)的左、右焦点分别为F1、F2 , 直线l过F2且与双曲线交于A、B两点.
(1)若l的倾斜角为 ,△F1AB是等边三角形,求双曲线的渐近线方程;
(2)设b= ,若l的斜率存在,M为AB的中点,且 =0,求l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=(log2x)2﹣2alog2x+b(x>0).当x= 时,f(x)有最小值﹣1.
(1)求a与b的值;
(2)求满足f(x)<0的x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com