精英家教网 > 高中数学 > 题目详情
精英家教网如图,在等腰梯形ABCD中,AB∥DC,AB=4,CD=2,等腰梯形的高为3,O为AB中点,PO⊥平面ABCD,垂足为O,PO=2,EA∥PO.
(1)求证:BD⊥平面EAC;
(2)求二面角E-AC-P的平面角的余弦值.
分析:(1)欲证BD⊥平面EAC,根据直线与平面垂直的判定定理可知只需证BD与平面EAC内两相交直线垂直,取CD中点M,以AB中点O为坐标原点,OA、OM、OP为x轴、y轴、z轴建立直角坐标系,根据向量数量积可知BD⊥AC,而BD⊥AE,满足定理所需条件;
(2)先求出平面PAC的一个法向量,结合图形可知
BD
是平面EAC的一个法向量,然后利用向量的夹角公式求出此角的余弦值即为二面角E-AC-P的余弦值.
解答:精英家教网解:(1)证:如图,取CD中点M,以AB中点O为坐标原点,OA、OM、OP为x轴、y轴、z轴建立直角坐标系,
则A(2,0,0),B(-2,0,0),C(-1,3,0),D(1,3,0),
AC
=(-3,3,0),
BD
=(3,3,0),
AC
BD
=-3×3+3×3=0

∴BD⊥AC、(4分)
∵AE∥PO,PO⊥平面ABCD,∴AE⊥平面ABCD得BD⊥AE,
∴BD⊥平面EAC
(2)P(0,0,2),
AP
=(-2,0,2),设平面PAC的一个法向量
n
=(x,y,z)

AP
n
=0
AC
n
=0
-2x+2z=0
-3x+3y=0
设x=1得
n
=(1,1,1)
BD
=(3,3,0)是平面EAC的一个法向量
cos<
n
BD
>=
n
BD
|
n
||
BD
|
=
3+3
3
2
3
=
6
3
.故二面角E-AC-P的余弦值
6
3
.(12分)
点评:本小题主要考查直线与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在等腰梯形CDEF中,CB、DA是梯形的高,AE=BF=2,AB=2
2
,现将梯形沿CB、DA折起,使EF∥AB,且EF=2AB,得一简单组合体ABCDEF如图所示,已知M、N、P分别为AF,BD,EF的中点.
(1)求证:MN∥平面BCF;
(2)求证:AP⊥平面DAE.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1;几何证明选讲.
如图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E.
求证:DE•DC=AE•BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河北模拟)如图,在等腰梯形ABCD中,CD=2,AB=4,AD=BC=
2
,E、F分别为CD、AB中点,沿EF将梯形AFED折起,使得∠AFB=60°,点G为FB的中点.
(1)求证:AG⊥平面BCEF
(2)求DG的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在等腰梯形ABCD中,上底CD=3,下底AB=4,E、F分别为AB、CD中点,分别沿DE、CE把△ADE与△BCE折起,使A、B重合于点P.

(1)求证:PE⊥CD;
(2)若点P在面CDE的射影恰好是点F,求EF的长.

查看答案和解析>>

同步练习册答案