精英家教网 > 高中数学 > 题目详情
已知
a
b
c
是同一平面内的三个单位向量,它们两两之间的夹角均为120°,且|k
a
+
b
+
c
|>1,则实数k的取值范围是(  )
分析:由题意可得
a
b
=
a
c
=
c
a
=-
1
2
,|
a
|=|
b
|=|
c
|=1,再根据|k
a
+
b
+
c
|>1,可得:|k
a
+
b
+
c
|2>1,即 k2
a
2
+
b
2
+
c
2
+2k
a
b
+2k
a
c
+2
b
c
>1,
所以,k2-2k>0,由此解得 实数k的取值范围.
解答:解:由题意可得
a
b
=
a
c
=
c
a
=1×1×cos120°=-
1
2
,|
a
|=|
b
|=|
c
|=1,
根据|k
a
+
b
+
c
|>1,可得:|k
a
+
b
+
c
|2>1,即 k2
a
2
+
b
2
+
c
2
+2k
a
b
+2k
a
c
+2
b
c
>1,
所以k2-2k>0,
解得k<0,或k>2.
故选C.
点评:本题主要考查两个向量的数量积的运算,求向量的模,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
b
c
是同一平面内的三个向量,其中
a
=(1,2)
(1)若|
c
|=2
5
,且
c
a
,求
c
的坐标;
(2)若|
b
|=
5
2
,且2
a
+
b
a
-3
b
垂直,求
a
b
的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
c
是同一平面内的三个向量,其中
a
=(1,-2).
(1)若|
c
|=2
5
,且
c
a
,求向量
c
的坐标;
(2)若|
b
|=
2
,且
a
+
b
a
-2
b
垂直,求
a
b
的夹角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
c
是同一平面内的三个向量,其中
a
=(1, 2)

(Ⅰ)若|
b
|=3
5
,且
b
a
,求
b
的坐标;
(Ⅱ)若
c
a
的夹角θ的余弦值为-
5
10
,且(
a
+
c
)⊥(
a
-9
c
)
,求|
c
|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是同一平面上不共线的三点,且
AB
AC
=
BA
BC

(1)求证:∠CAB=∠CBA;
(2)若
AB
AC
=2
,求A,B两点之间的距离.

查看答案和解析>>

同步练习册答案