精英家教网 > 高中数学 > 题目详情
15.已知集合M={x|(x-a)(x2-ax+a-1)=0}中各元素之和为3,则实数a的值为2或$\frac{3}{2}$.

分析 先求出方程的解,x=a,a-1,或1.由于集合中的元素要满足互异性,所以需讨论方程解的情况,分成a=1,a-1=1,a≠1且a-1≠1三种情况进行讨论,根据元素之和为3便可求出a.

解答 解:x2-ax+a-1=[x-(a-1)](x-1)=0;
∴方程(x-a)(x2-ax+a-1)=0的解为:
x1=a,x2=a-1,x3=1;
若a=1,则A={1,0},不满足A中元素之和为3;
若a-1=1,则A={2,1},元素和为3;
若a≠1,且a≠2,则A={a,a-1,1},∴a+a-1+1=3,解得a=$\frac{3}{2}$.
∴a=2或a=$\frac{3}{2}$.
故答案为:2或$\frac{3}{2}$.

点评 注意需对方程解中是否有相等的情况进行讨论,不能直接让方程的解的和为3求a,并且讨论时不要漏了可能的情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为F(2,0),且过点(0,$\sqrt{2}$).
(1)求此椭圆的方程;
(2)是否存在过点F且斜率为k的直线l与椭圆C交于A,B两点,使得∠AOB为锐角?若存在,求实数k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若a,b为实数,且(5a+6)2+(b-3)2=0,求$\frac{a}{b}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在Rt△ABC中,∠CAB=90°,AB=2,AC=$\frac{\sqrt{2}}{2}$,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变,求曲线E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知2x=log23,则22x+1+2-2x=$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,直线y=x-2与圆x2+y2-4x+3=0及抛物线y2=8x依次交于A、B、C、D四点,则|AB|+|CD|=(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=tan$\frac{πx}{4}$,x∈(2,6)的图象与x轴交于A点,过点A的直线l与函数的图象交于B,C两点,则($\overrightarrow{OB}$+$\overrightarrow{OC}$)•$\overrightarrow{OA}$=(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\frac{{sin\frac{11π}{4}•cos(-\frac{2π}{3})}}{{tan(-\frac{23π}{3})}}+\frac{{sin(-\frac{21π}{4})}}{{cos(\frac{17π}{6})}}$化简的结果是(  )
A.$-\frac{{5\sqrt{6}}}{12}$B.$\frac{{\sqrt{6}}}{4}$C.$-\frac{{\sqrt{6}}}{4}$D.$\frac{{5\sqrt{6}}}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的函数f(x)满足f(x+2)=-f(x),当-2≤x≤-1时,f(x)=-(x+1)2,当-1<x<2时,f(x)=x,则f(1)+f(2)+…+f(2015)=(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案