精英家教网 > 高中数学 > 题目详情
已知函数y=f(x-1)的图象关于点(1,0)对称,且当x∈(-∞,0),f(x)+xf′(x)<0成立.若a=(20.2)•f(20.2),b=(ln2)•f(ln2),c=(log2
1
4
)•f(log2
1
4
),则a,b,c的大小关系是(  )
分析:由y=f(x-1)的图象关点(1,0)对称,知f(x)是奇函数;令g(x)=xf(x),得g(x)是偶函数;由x∈(-∞,0)时,g′(x)=f(x)+xf′(x)<0,得函数g(x)在x∈(-∞,0)上单调递减,从而得g(x)在(0,+∞)上单调递增;再由-log2
1
4
=2>20.2>1>ln2>0,得a,b,c的大小.
解答:解:∵函数y=f(x-1)的图象关于点(1,0)对称,
∴函数y=f(x)的图象关于点(0,0)对称,
∴f(x)是奇函数,∴xf(x)是偶函数.
设g(x)=xf(x),当x∈(-∞,0)时,g′(x)=f(x)+xf′(x)<0,
∴函数g(x)在x∈(-∞,0)上单调递减,
∴函数g(x)在x∈(0,+∞)上单调递增.
∵-log2
1
4
=2>20.2>1>ln2>0,∴g(-log2
1
4
)>g(20.2)>g(ln2);
又g(-log2
1
4
)=g(log2
1
4
),即(log2
1
4
)•f(log2
1
4
)>(20.2)•f(20.2)>(ln2)•f(ln2);
∴c>a>b.
故选:C.
点评:本题考查了函数的图象与奇偶性关系以及用导数研究函数的单调性等知识,解题的关键是构造函数g(x)并求导,属于易出错的题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案