精英家教网 > 高中数学 > 题目详情

如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径毫米,滴管内液体忽略不计.

(1)如果瓶内的药液恰好分钟滴完,问每分钟应滴下多少滴?
(2)在条件(1)下,设输液开始后(单位:分钟),瓶内液面与进气管的距离为(单位:厘米),已知当时,.试将表示为的函数.(注:

(1);(2)

解析试题分析:(1)本小题主要通过题中给出图形与数据求得瓶内液体的体积(两个圆柱体的体积和),再计算滴球状液体的体积,然后利用二者相等,求得
(2)本小题任然根据滴管内匀速滴下球状液体体积等于瓶内液体下降的体积,只是需要注意瓶内液体应区分两个圆柱体体积的不同,所以所得为分段函数
试题解析:(1)设每分钟滴下)滴,      1分
则瓶内液体的体积      3分
滴球状液体的体积      5分
所以,解得,故每分钟应滴下滴。      6分
(2)由(1)知,每分钟滴下药液      7分
时,,即,此时   10分
时,,即,此时   13分
综上可得      14分
考点:1.几何体体积的计算;2.分段函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数在点(0,f(0))处的切线方程;
(2)求函数单调递增区间;
(3)若∈[1,1],使得(e是自然对数的底数),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的值;
(Ⅱ)用函数单调性的定义证明函数上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,当时,求的取值范围;
(2)若定义在上奇函数满足,且当时,,求上的反函数
(3)若关于的不等式在区间上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米.已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元.
(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;(总开发费用=总建筑费用+购地费用)
(2)要使整幢写字楼每平方米的平均开发费用最低,该写字楼应建为多少层?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当时,车流速度是车流密度x的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观察点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,点在函数的图象上,
在函数的图象上,设
(1)求数列的通项公式;
(2)记,求数列的前项和为
(3)已知,记数列的前项和为,数列的前项和为,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算:(1);   (2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于直线x=1对称.
(1)求证:f(x)是周期为4的周期函数;
(2)若(0<x≤1),求x∈[-5,-4]时,函数f(x)的解析式.

查看答案和解析>>

同步练习册答案