精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2.5cos(ωx+φ)(ω>0,|φ|< )的部分图象如图所示,M、N两点之间的距离为13,且f(3)=0,若将函数f(x)的图象向右平移t(t>0)个单位长度后所得函数的图象关于坐标原点对称,则t的最小值为(
A.7
B.8
C.9
D.10

【答案】D
【解析】解:∵M、N两点之间的距离为13,可得 =2×13, ∴解得:ω=
∵f(3)=0,可得:2.5cos( ×3+φ)=0,
∴解得: ×3+φ=kπ+ ,k∈Z,可得:φ=kπ+ ,k∈Z,
由于|φ|< ,解得:φ=
∴将函数f(x)的图象向右平移t(t>0)个单位长度后所得函数的图象对应的函数解析式为:y=2.5cos[ ×(x﹣t)+ ]=2.5cos( x﹣ t+ ),
∵函数的图象关于坐标原点对称,可得:﹣ t+ =kπ+ ,k∈Z,解得:t=﹣13k﹣3,k∈Z.
∴当k=﹣1时,正数t的最小值为10.
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=|sinx|+|cosx|的最小正周期为m,函数g(x)=sin3x﹣sinx的最大值为n,则mn=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣ax(a∈R).
(1)若直线y=3x﹣1是函数f(x)图象的一条切线,求实数a的值;
(2)若函数f(x)在[1,e2]上的最大值为1﹣ae(e为自然对数的底数),求实数a的值;
(3)若关于x的方程ln(2x2﹣x﹣3t)+x2﹣x﹣t=ln(x﹣t)有且仅有唯一的实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知A= ,cosB= . (Ⅰ)求cosC的值;
(Ⅱ)若BC=2 ,D为AB的中点,求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C1和C2的参数方程分别是 (φ为参数)和 (φ为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求圆C1和C2的极坐标方程;
(2)射线OM:θ=a与圆C1的交点为O、P,与圆C2的交点为O、Q,求|OP||OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y关于t的线性回归方程;

(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点H(0,﹣8),点P在x轴上,动点F满足PF⊥PH,且PF与y轴交于点Q,Q为线段PF的中点.
(1)求动点F的轨迹E的方程;
(2)点D是直线l:x﹣y﹣2=0上任意一点,过点D作E的两条切线,切点分别为A、B,取线段AB的中点,连接DM交曲线E于点N,求证:直线AB过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以原点O为极点,x轴正半轴为极轴建立极坐标系.若曲线C的极坐标方程为ρcos2θ﹣4sinθ=0,P点的极坐标为 ,在平面直角坐标系中,直线l经过点P,斜率为
(Ⅰ)写出曲线C的直角坐标方程和直线l的参数方程;
(Ⅱ)设直线l与曲线C相交于A,B两点,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的左右焦点与其短轴的一个端点是正三角形的三个顶点,点D 在椭圆C上,直线l:y=kx+m与椭圆C相交于A、P两点,与x轴、y轴分别相交于点N和M,且PM=MN,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A、B分别作x轴的垂涎,垂足分别为A1、B1
(1)求椭圆C的方程;
(2)是否存在直线l,使得点N平分线段A1B1?若存在,求求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案