【题目】设函数是定义在上的偶函数,且对任意的恒有,已知当时,,则下列命题:
①对任意,都有;②函数在上递减,在上递增;
③函数的最大值是1,最小值是0;④当时,.
其中正确命题的序号有________.
科目:高中数学 来源: 题型:
【题目】已知表示两个不同的平面, 表示两条不同直线,对于下列两个命题:
①若,则“”是“”的充分不必要条件;
②若,则“”是“且”的充要条件.判读正确的是( )
A. ①②都是真命题 B. ①是真命题,②是假命题
C. ①是假命题,②是真命题 D. ①②都是假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知曲线C1:ρ=2cosθ,将曲线C1上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C,又已知直线l: (t是参数),且直线l与曲线C交于A,B两点.
(1)求曲线C的直角坐标方程,并说明它是什么曲线;
(2)设定点P( ,0),求|PA|+|PB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.
(1)求的值;
(2)求函数的对称轴方程;
(3)当时,方程有两个不同的实根,求m的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过市场调查,超市中的某种小商品在过去的近40天的日销售量(单位:件)与价格(单位:元)为时间(单位:天)的函数,且日销售量近似满足,价格近似满足。
(1)写出该商品的日销售额(单位:元)与时间()的函数解析式并用分段函数形式表示该解析式(日销售额=销售量商品价格);
(2)求该种商品的日销售额的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018河北保定市上学期期末调研】已知点到点的距离比到轴的距离大1.
(I)求点的轨迹的方程;
(II)设直线: ,交轨迹于、两点, 为坐标原点,试在轨迹的部分上求一点,使得的面积最大,并求其最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:
①函数的单调增区间是;
②若函数定义域为且满足,则它的图象关于轴对称;
③函数的值域为;
④函数的图象和直线的公共点个数是,则的值可能是;
⑤若函数在上有零点,则实数的取值范围是.
其中正确的序号是_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com