分析 (1)连接OF,利用切线的性质及角之间的互余关系得到DF=DE,再结合切割线定理证明DE2=DB•DA,即可求出DE.
(2)求出BE=2,OE=1,利用勾股定理求CE的长.
解答 (1)证明:连接OF.
因为DF切⊙O于F,所以∠OFD=90°.
所以∠OFC+∠CFD=90°.
因为OC=OF,所以∠OCF=∠OFC.
因为CO⊥AB于O,所以∠OCF+∠CEO=90°.
所以∠CFD=∠CEO=∠DEF,所以DF=DE.
因为DF是⊙O的切线,所以DF2=DB•DA.
所以DE2=DB•DA.
(2)解:∵DF2=DB•DA,DB=2,DF=4.
∴DA=8,从而AB=6,则OC=3.
又由(1)可知,DE=DF=4,∴BE=2,OE=1.
从而 在Rt△COE中,$CE=\sqrt{C{O^2}+O{E^2}}=\sqrt{10}$.
点评 本题主要考查了与圆有关的比例线段、圆的切线的性质定理的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{2}$ | B. | 3 | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (1,2) | B. | [1,2] | C. | [1,2) | D. | (1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com