精英家教网 > 高中数学 > 题目详情

函数f(x)=ax3-6ax2+3bx+b,其图象在x=2处的切线方程为3x+y-11=0.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数y=f(x)的图象与数学公式的图象有三个不同的交点,求实数m的取值范围;
(Ⅲ)是否存在点P,使得过点P的直线若能与曲线y=f(x)围成两个封闭图形,则这两个封闭图形的面积相等?若存在,求出P点的坐标;若不存在,说明理由.

解:(Ⅰ)由题意得f'(x)=3ax2-12ax+3b,f'(2)=-3,
∵图象在x=2处的切线方程为3x+y-11=0.
∴x=2时,y=5,即f(2)=5,

解得a=1,b=3,
∴f(x)=x3-6x2+9x+3.(4分)
(Ⅱ)由f(x)=x3-6x2+9x+3,可得f'(x)=3x2-12x+9,
=x2+x+3+m,
则由题意可得x3-6x2+9x+3=x2+x+3+m有三个不相等的实根,
即g(x)=x3-7x2+8x-m的图象与x轴有三个不同的交点,g'(x)=3x2-14x+8=(3x-2)(x-4),
则g(x),g'(x)的变化情况如下表.
x4(4,+∞)
g'(x)+0-0+
g(x)极大值极小值
则函数f(x)的极大值为,极小值为g(4)=-16-m.(6分)
y=f(x)的图象与的图象有三个不同交点,则有:
解得.(8分)
(Ⅲ)存在点P满足条件.(9分)
∵f(x)=x3-6x2+9x+3,
∴f'(x)=3x2-12x+9=3(x-1)(x-3),
由f'(x)=0,得x1=1,x2=3.
当x<1时,f'(x)>0;当1<x<3时,f'(x)<0;当x>3时,f'(x)>0.
可知极值点为A(1,7),B(3,3),线段AB中点P(2,5)在曲线y=f(x)上,且该曲线关于点P(2,5)成中心对称.
证明如下:
∵f(x)=x3-6x2+9x+3,
∴f(4-x)=(4-x)3-6(4-x)2+9(4-x)+3=-x3+6x2-9x+7,
∴f(x)+f(4-x)=10.
上式表明,若点A(x,y)为曲线y=f(x)上任一点,其关于P(2,5)的对称点A(4-x,10-y)也在曲线y=f(x)上,曲线y=f(x)关于点P(2,5)对称.
故存在点P(2,5),使得过该点的直线若能与曲线y=f(x)围成两个封闭图形,这两个封闭图形的面积相等.…(12分)
分析:(Ⅰ)求得函数的导数,利用函数在某一点处导数的几何意义:f'(2)=-3以及f(2)=5,列方程组求解参数.
(Ⅱ)由(Ⅰ)中得到的函数解析式y=f(x)的图象与的图象有三个不同的交点,转化为方程
f(x)=有三个不相等的实根,进一步转化为函数g(x)=f(x)-的图象与x轴有三个不同的交点,于是利用函数导数可得新函数g(x)的极值,通过判断极值的符号可得结论.
(Ⅲ)根据函数f(x)=x3-6x2+9x+3,可知极值点为A(1,7),B(3,3),进而证明线段AB中点P(2,5)在曲线y=f(x)上,且该曲线关于点P(2,5)成中心对称.
点评:本题考查函数的导数以及导数的几何意义,利用导数求解函数的单调性和极值问题,考查了函数的对称性,考查了函数与方程的思想,转化与化归的思想,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列命题:
①若f(x)存在导函数,则f′(2x)=[f(2x)]′.
②若函数h(x)=cos4x-sin4x,则h′(
π12
)=1

③若函数g(x)=(x-1)(x-2)…(x-2009)(x-2010),则g′(2010)=2009!.
④若三次函数f(x)=ax3+bx2+cx+d,则“a+b+c=0”是“f(x)有极值点”的充要条件.
其中真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

18、已知函数f(x)=ax3-6ax2+b(x∈[-1,2])的最大值为3,最小值为-29,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).
定义:(1)设f″(x)是函数y=f(x)的导数y=f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”;
定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
己知f(x)=x3-3x2+2x+2,请回答下列问题:
(1)求函数f(x)的“拐点”A的坐标
 

(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax3-2x2+a2x在x=1处有极小值,则实数a等于
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下表为函数f(x)=ax3+cx+d部分自变量取值及其对应函数值,为了便于研究,相关函数值取非整数值时,取值精确到0.01.
x -0.61 -0.59 -0.56 -0.35 0 0.26 0.42 1.57 3.27
y 0.07 0.02 -0.03 -0.22 0 0.21 0.20 -10.04 -101.63
根据表中数据,研究该函数的一些性质:
(1)判断f(x)的奇偶性,并证明;
(2)判断f(x)在[0.55,0.6]上是否存在零点,并说明理由.

查看答案和解析>>

同步练习册答案