精英家教网 > 高中数学 > 题目详情

【题目】近年来,来自一带一路沿线的20国青年评选出了中国的新四大发明:高铁、扫码支付、共享单车和网购.其中共享单车既响应绿色出行号召,节能减排,保护环境,又方便人们短距离出行,增强灵活性.某城市试投放3个品牌的共享单车分别为红车、黄车、蓝车,三种车的计费标准均为每15分钟(不足15分钟按15分钟计)1元,按每日累计时长结算费用,例如某人某日共使用了24分钟,系统计时为30分钟.A同学统计了他1个月(按30天计)每天使用共享单车的时长如茎叶图所示,不考虑每月自然因素和社会因素的影响,用频率近似代替概率.设A同学每天消费元.

1)求的分布列及数学期望;

2)各品牌为推广用户使用,推出APP注册会员的优惠活动:红车月功能使用费8元,每天消费打5折;黄车月功能使用费20元,每天前15分钟免费,之后消费打8折;蓝车月功能使用费45元,每月使用22小时之内免费,超出部分按每15分钟1元计费.设分别为红车,黄车,蓝车的月消费,写出的函数关系式,参考(1)的结果,A同学下个月选择其中一个注册会员,他选哪个费用最低?

3)该城市计划3个品牌的共享单车共3000辆正式投入使用,为节约居民开支,随机调查了100名用户一周的平均使用时长如下表:

时长

(015]

(1530]

(3045]

(4560]

人数

16

45

34

5

在(2)的活动条件下,每个品牌各应该投放多少辆?

【答案】1)分布列见解析,2)选红车(348015001020

【解析】

1)根据茎叶图可能的取值有,分别求出其分布列及期望即可;

2)根据题意分别写出的函数关系式,并算出A同学在每种优惠活动下的费用,看哪个费用最低即可;

3)算出每个时长下每个品牌的费用,比较大小,确定每个时长下选择的最优惠的品牌,根据比例算出每个品牌各应该投放的辆数.

解:(1)根据茎叶图统计A同学30天里面每天使用共享单车的时长有6天,有12天,有10天,有2天,

可能的取值有

1

2

3

4

2)红车,即

黄车,即

蓝车,即

A同学下个月选择红车注册会员,则其消费为:元,

A同学下个月选择黄车注册会员,则其消费为:元,

A同学下个月选择蓝车注册会员,则其消费为:元,

故选红车费用最低;

3)当平均时长为(015]时,红车消费元,黄车消费元,蓝车消费元,故此时选黄车;

当平均时长为(1530]时,红车消费元,黄车消费元,蓝车消费元,故此时选红车;

当平均时长为(3045]时,红车消费元,黄车消费元,蓝车消费元,故此时选蓝车;

当时长为(4560]时,红车消费元,黄车消费元,蓝车消费元,故此时选红车;

故选红车的人数为50,选黄车的人数为16,选蓝车的人数为34,

故红车应该投放辆,黄车应该投放辆,蓝车应该投放辆,

综合:红车应该投放辆,黄车应该投放辆,蓝车应该投放辆.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数为常数)的图象与x轴有唯一公共点M

1)求函数的单调区间.

2)若,存在不相等的实数,满足,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是等差数列,是等比数列,.

(1)求的通项公式;

(2)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点AB.

)求椭圆M的方程;

)若,求 的最大值;

)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.C,D和点 共线,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《九章算术·商功》中阐述:“斜解立方,得两壍堵。斜解壍堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”若称为“阳马”的某几何体的三视图如图所示,图中网格纸上小正方形的边长为1,则对该几何体描述:

①四个侧面都是直角三角形;

②最长的侧棱长为

③四个侧面中有三个侧面是全等的直角三角形;

④外接球的表面积为.

其中正确的个数为( )

A. 0B. 1

C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形,将沿矩形的对角线所在的直线进行翻折,在翻折过程中,则( ).

A. 时,存在某个位置,使得

B. 时,存在某个位置,使得

C. 时,存在某个位置,使得

D. 时,都不存在某个位置,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)求p,q的值以及函数的表达式,并写出的定义域D

2)设函数A=,集合,当时,求实数k的取值范围;

3)当时,设,数列的前n项和为,直线的斜率为,是否存在实数,使对一切恒成立,若存在,分别求出实数的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,P是圆x2+y24上的动点,P点在x轴上的射影是D,点M满足

(Ⅰ)求动点M的轨迹C的方程

(Ⅱ)设AB是轨迹C上的不同两点,点E(﹣40),且满足,若λ[1),求直线AB的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四面体中,,且两两互相垂直,点的中心.

1)求二面角的大小(用反三角函数表示);

2)过,垂足为,求绕直线旋转一周所形成的几何体的体积;

3)将绕直线旋转一周,则在旋转过程中,直线与直线所成角记为,求的取值范围.

查看答案和解析>>

同步练习册答案