【题目】如图,在四面体中,平面,,,.是的中点,是的中点,点在线段上,且.
(1)证明:平面;
(2)若二面角的大小为60°,求∠BDC的大小.
【答案】(1)证明见解析;(2).
【解析】(1)如图,取BD的中点O,以O为原点,OD,OP所在射线为y轴、z轴的正半轴,建立空间直角坐标系O-xyz.
由题意知A(0,,2),B(0,,0),D(0,,0).设点C的坐标为(x0,y0,0).
因为,所以Q.因为M为AD的中点,故M(0,,1).
又P为BM的中点,故P,所以=.
又平面BCD的一个法向量为u=(0,0,1),故,故.
又PQ平面BCD,所以PQ∥平面BCD.
(2)设m=(x,y,z)为平面BMC的法向量,易得=(-x0,,1),=(0,,1),
所以取y=-1,得m=.
又平面BDM的一个法向量为n=(1,0,0),
所以是|cos〈m,n〉|=,即.①
又BC⊥CD,所以·=0,即(-x0,,0)·(-x0,,0)=0,即x02+y02=2.②
联立①②,解得(舍去)或(舍去)或.
所以tan,又是锐角,所以.
科目:高中数学 来源: 题型:
【题目】近几年,京津冀等地数城市指数“爆表”,尤其2015年污染最重.为了探究车流量与PM2.5的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与PM2.5的数据如表:
时间 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
车流量x(万辆) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5的浓度y(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(Ⅰ)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;
(ⅱ)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)
参考公式:回归直线的方程是,其中, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地棚户区改造建筑平面示意图如图所示,经规划调研确定,棚改规划建筑用地区域近似为圆面,该圆面的内接四边形是原棚户区建筑用地,测量可知边界万米,万米,万米.
(1)请计算原棚户区建筑用地的面积及的长;
(2)因地理条件的限制,边界不能更改,而边界可以调整,为了提高棚户区建筑用地的利用率,请在圆弧上设计一点,使得棚户区改造后的新建筑用地的面积最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正三棱柱ABC-A1B1C1的底面边长是2,侧棱长是,D是AC的中点。
(1)求证:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大小;
(3)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的长;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的两个焦点分别为, ,过作椭圆长轴的垂线交椭圆于点,若为等腰直角三角形,则椭圆的离心率是( )
A. B. C. D.
【答案】C
【解析】试题分析:解:设点P在x轴上方,坐标为(),∵为等腰直角三角形,∴|PF2|=|F1F2|, ,故选D.
考点:椭圆的简单性质
点评:本题主要考查了椭圆的简单性质.椭圆的离心率是高考中选择填空题常考的题目.应熟练掌握圆锥曲线中a,b,c和e的关系
【题型】单选题
【结束】
8
【题目】“”是“对任意的正数, ”的( )
A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某奶茶公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的奶茶共5 杯,其颜色完全相同,并且其中3杯为奶茶,另外2杯为奶茶,公司要求此员工一一品尝后,从5杯奶茶中选出2杯奶茶.若该员工2杯都选奶茶,则评为优秀;若2 杯选对1杯奶茶,则评为良好;否则评为及格.假设此人对和两种奶茶没有鉴别能力.
(Ⅰ)求此人被评为优秀的概率;(Ⅱ)求此人被评为良好及以上的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com