A. | 4 | B. | 3 | C. | 1+$\sqrt{3}$ | D. | 1+$\sqrt{2}$ |
分析 将原式变形y=x-2+$\frac{1}{x-2}$+2,由x-2>0根据不等式的性质,y=x-2+$\frac{1}{x-2}$+2≥2$\sqrt{(x-2)×\frac{1}{x-2}}$=2=2+2=4,当x-2=$\frac{1}{x-2}$时取“=”,即可求得a的值.
解答 解:y=x+$\frac{1}{x-2}$=x-2+$\frac{1}{x-2}$+2,
∵x>2,
∴x-2>0,
∴y=x-2+$\frac{1}{x-2}$+2≥2$\sqrt{(x-2)×\frac{1}{x-2}}$=2=2+2=4,
∴当x-2=$\frac{1}{x-2}$时取“=”,即x=3时取“=”
∴当x=3时,y有最小值4,
∴a=3,
故答案选:B.
点评 本题考查基本不等式的性质及应用,熟练掌握基本不等式的性质是解题的关键,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 18,$\frac{1}{3}$ | B. | 12,$\frac{2}{3}$ | C. | 18,$\frac{2}{3}$ | D. | 12,$\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com