精英家教网 > 高中数学 > 题目详情

【题目】某中学有初中学生1800人,高中学生1200人,为了解学生本学期课外阅读时间,现采用分成抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按初中学生高中学生分为两组,再将每组学生的阅读时间(单位:小时)分为5组:[010),[1020),[2030),[3040),[4050],并分别加以统计,得到如图所示的频率分布直方图.

1)写出的值;试估计该校所有学生中,阅读时间不小于30个小时的学生人数;
2)从阅读时间不足10个小时的样本学生中随机抽取3人,并用表示其中初中生的人数,求的分布列和数学期望.

【答案】1,870 2)分布列见解析,

【解析】

1)根据频率频率直方图的性质,可求得的值;由分层抽样,求得初中生有60名,高中有40名,分别求得初高中生阅读时间不小于30小时的学生的频率及人数,求和;
2)分别求得,初高中生中阅读时间不足10个小时的学生人数,写出的取值及概率,写出分布列和数学期望.

解:(1)由频率分布直方图得,

解得

由分层抽样,知抽取的初中生有60名,高中生有40.

因为初中生中,阅读时间不小于30个小时的学生频率为

所以所有的初中生中,阅读时间不小于30个小时的学生约有人,

同理,高中生中,阅读时间不小于30个小时的学生频率为,学生人数约有.

所以该校所有学生中,阅读时间不小于30个小时的学生人数约有450+420=870.

2)初中生中,阅读时间不足10个小时的学生频率为,样本人数为.

同理,高中生中,阅读时间不足10个小时的学生样本人数为.

X的可能取值为123.

.

1

2

3

所以的分布列为:

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)若与平行的直线与曲线交于两点.且在轴的截距为整数,的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为双曲线的一个焦点,过的一条渐近线的垂线,垂足为点的另一条渐近线交于点,若,则的离心率为(

A.2B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,过点且与轴垂直的直线被椭圆截得的线段长为,且与短轴两端点的连线相互垂直.

1)求椭圆的方程;

2)若圆上存在两点,椭圆上存在两个点满足:三点共线,三点共线,且,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,四边形是菱形,E上一点,且,设.

1)证明:平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱柱中底面边长为2,高为3DE分别在上,且.

1AE上是否存在一点P,使得?若不存在,说明理由;若存在,指出P的位置;

2)求点到截面ADE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆

(1)若椭圆的离心率为,求的值;

(2)若过点任作一条直线与椭圆交于不同的两点,在轴上是否存在点,使得, 若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学生考试中答对但得不了满分的原因多为答题不规范,具体表现为:解题结果正确,无明显推理错误,但语言不规范、缺少必要文字说明、卷面字迹不清、得分要点缺失等,记此类解答为“类解答”为评估此类解答导致的失分情况,某市教研室做了项试验:从某次考试的数学试卷中随机抽取若干属于“类解答”的题目,扫描后由近百名数学老师集体评阅,统计发现,满分12分的题,阅卷老师所评分数及各分数所占比例大约如下表:

教师评分(满分12分)

11

10

9

各分数所占比例

某次数学考试试卷评阅采用“双评+仲裁”的方式,规则如下:两名老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于等于1分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于1分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分;当一、二评分数和仲裁分数差值的绝对值相同时,取仲裁分数和前两评中较高的分数的平均分为该题得分.(假设本次考试阅卷老师对满分为12分的题目中的“类解答”所评分数及比例均如上表所示,比例视为概率,且一、二评与仲裁三位老师评分互不影响).

1)本次数学考试中甲同学某题(满分12分)的解答属于“类解答”,求甲同学此题得分的分布列及数学期望;

2)本次数学考试有6个解答题,每题满分12分,同学乙6个题的解答均为“类解答”.

①记乙同学6个题得分为的题目个数为计算事件的概率.

②同学丙的前四题均为满分,第5题为“类解答”,第6题得8.以乙、丙两位同学解答题总分均值为依据,谈谈你对“类解答”的认识.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校同时提供两类线上选修课程,类选修课每次观看线上直播分钟,并完成课后作业分钟,可获得积分分;类选修课每次观看线上直播分钟,并完成课后作业分钟,可获得积分分.每周开设次,共开设周,每次均为独立内容,每次只能选择类、类课程中的一类学习.当选择类课程次,类课程次时,可获得总积分共_______分.如果规定学生观看直播总时间不得少于分钟,课后作业总时间不得少于分钟,则通过线上选修课的学习,最多可以获得总积分共________分.

查看答案和解析>>

同步练习册答案