精英家教网 > 高中数学 > 题目详情

如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.

 

 

(1)求该弦椭圆的方程;

(2)求弦AC中点的横坐标;

(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.

 

【答案】

(1)由椭圆定义及条件知,2a=|F1B|+|F2B|=10,得a=5,又c=4,所以b==3.

故椭圆方程为=1.

(2)由点B(4,yB)在椭圆上,得|F2B|=|yB|=.因为椭圆右准线方程为x=,离心率为,根据椭圆定义,有|F2A|=(-x1),|F2C|=(-x2),

由|F2A|、|F2B|、|F2C|成等差数列,得

(-x1)+(-x2)=2×,由此得出:x1+x2=8.

设弦AC的中点为P(x0,y0),则x0==4.

(3)解法一:由A(x1,y1),C(x2,y2)在椭圆上.

 
                 

①-②得9(x12-x22)+25(y12-y22)=0,

即9×=0(x1≠x2)

 (k≠0)代入上式,

得9×4+25y0(-)=0

(k≠0)

即k=y0(当k=0时也成立).

由点P(4,y0)在弦AC的垂直平分线上,得y0=4k+m,所以m=y0-4k=y0y0=-y0.

由点P(4,y0)在线段BB′(B′与B关于x轴对称)的内部,

得-<y0,所以-<m<.

解法二:因为弦AC的中点为P(4,y0),所以直线AC的方程为

y-y0=-(x-4)(k≠0)                          ③

将③代入椭圆方程=1,得

(9k2+25)x2-50(ky0+4)x+25(ky0+4)2-25×9k2=0

所以x1+x2==8,解得k=y0.(当k=0时也成立)

(以下同解法一).

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.

(1)求该弦椭圆的方程;

(2)求弦AC中点的横坐标;

(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件: |F2A|、|F2B|、|F2C|成等差数列.

(1)求该弦椭圆的方程;

(2)求弦AC中点的横坐标;

(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013届山东省高二上学期12月月考理科数学 题型:解答题

.(本小题满分12分).

如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.

 

 

 

(1) 求该弦椭圆的方程;

(2)求弦AC中点的横坐标;

(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.

 

 

查看答案和解析>>

科目:高中数学 来源:2013届山东省高二12月月考理科数学 题型:解答题

(本小题满分12分).

如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.

 

(1)求该弦椭圆的方程;

(2)求弦AC中点的横坐标;

(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.

 

查看答案和解析>>

同步练习册答案