精英家教网 > 高中数学 > 题目详情

【题目】为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为(

A.6
B.8
C.12
D.18

【答案】C
【解析】解:由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人,第三组的频率为0.36,所以第三组的人数:18人,
第三组中没有疗效的有6人,
第三组中有疗效的有12人.
故选:C.
【考点精析】关于本题考查的频率分布直方图,需要了解频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求函数在点(1,0)处的切线方程;

(II)设实数k使得f(x)< kx恒成立,求k的范围;

(III)设函数,求函数h(x)在区间上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为4,直线被椭圆截得的线段长为.

(1)求椭圆的标准方程;

(2)过椭圆的右顶点作互相垂直的两条直线分别交椭圆两点(点不同于椭圆的右顶点),证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形ABCD的边AB=2,BC=1,以A为坐标原点,AB,AD边分别在x轴、y轴的正半轴上,建立直角坐标系。将矩形折叠,使A点落在线段DC上,重新记为点

(1)当点坐标为(1,1)时,求折痕所在直线方程.

(2)若折痕所在直线的斜率为k,试求折痕所在直线的方程;

(3)当时,设折痕所在直线与轴交于点E,与轴交于点F,将沿折痕EF旋转.使二面角的大小为,设三棱锥的外接球表面积为,试求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的定义域为(
A.(0,
B.(2,+∞)
C.(0, )∪(2,+∞)
D.(0, ]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中

A. 15 B. 16 C. 17 D. 18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差为2,前n项和为Sn , 且S1 , S2 , S4成等比数列.
(1)求数列{an}的通项公式;
(2)令bn=(﹣1)n1 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=3sin(2x+ )的图象向右平移 个单位长度,所得图象对应的函数(
A.在区间[ ]上单调递减
B.在区间[ ]上单调递增
C.在区间[﹣ ]上单调递减
D.在区间[﹣ ]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】教材上一例问题如下:

一只红铃虫的产卵数y和温度x有关,现收集了7组观测数据如下表,试建立yx之间的回归方程.

温度 x/℃

21

23

25

27

29

32

35

产卵数y/

7

11

21

24

66

115

325

某同学利用图形计算器研究它时,先作出散点图(如图所示),发现两个变量不呈线性相关关系根据已有的函数知识,发现样本点分布在某一条指数型曲线的附近是待定的参数),于是进行了如下的计算

根据以上计算结果,可以得到红铃虫的产卵数y对温度x的回归方程为__________.(精确到0.0001) (提示:利用代换可转化为线性关系

查看答案和解析>>

同步练习册答案