精英家教网 > 高中数学 > 题目详情

【题目】下列各点中,在不等式表示的平面区域内的是( )

A. B. C. D.

【答案】C

【解析】

根据题意,依次将选项中点的坐标代入不等式2x+y﹣60,验证其是否成立,若成立,则

在不等式表示的平面区域内,否则不在,综合即可得答案.

根据题意,依次分析选项:

对于A,将(0,7)代入不等式2x+y﹣60,可得7﹣60,不等式不成立,点(0,7)不

在不等式2x+y﹣60表示的平面区域内,A错误;

对于B,将(5,0)代入不等式2x+y﹣60,可得10﹣60,不等式不成立,点(5,0)

不在不等式2x+y﹣60表示的平面区域内,B错误;

对于C,将(0,6)代入不等式2x+y﹣60,可得6﹣60,不等式成立,点(0,6)在不

等式2x+y﹣60表示的平面区域内,C正确;

对于D,将(2,3)代入不等式2x+y﹣60,可得7﹣60,不等式不成立,点(2,3)不

在不等式2x+y﹣60表示的平面区域内,D错误;

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.且D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中装有四个形状大小完全相同的编号为1,2,3,4的球,从袋中随机抽取一个球,将其编号记为m,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为n,则关于x的一元二次方程无实根的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学在开学季准备销售一种盒饭进行试创业,在一个开学季内,每售出1盒该盒饭获利润10元,未售出的产品,每盒亏损5元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了150盒该产品,以x(单位:盒,)表示这个开学季内的市场需求量,y(单位:元)表示这个开学季内经销该产品的利润.

(1)根据直方图估计这个开学季内市场需求量x的平均数和众数;

(2)将y表示为x的函数;

(3)根据频率分布直方图估计利润y不少于1050元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表所示:

x

1

2

3

4

5

6

7

y

6

11

21

34

66

101

196

根据以上数据,绘制了散点图.

(1)根据散点图判断,在推广期内,均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由)

(2)y关于x的回归方程不是线性的可通过换元方法把它化归为线性回归方程。例如:ab为常数,e为自然对数的底数),可以两边同时取自然对数,再令,先用最小二乘法求出x的线性回归方程,再得出yx的回归方程。根据(1)的判断结果及表1中的数据,求y关于x的回归方程;

(3)由(2)中的归方程预测活动推出第12天使用扫码支付的人次

参考数据:

66

1.54

2711

50.12

3.47

其中,参考公式:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方体AC1中,AD=AB=2,AA1=1,E为D1C1的中点,如图所示.

(Ⅰ)在所给图中画出平面ABD1与平面B1EC的交线(不必说明理由);
(Ⅱ)证明:BD1∥平面B1EC;
(Ⅲ)求平面ABD1与平面B1EC所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段的垂直平分线与的交点的轨迹为曲线,若,且是曲线上不同的点,满足,则的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱A1B1C1﹣ABC中,侧棱与底面垂直,AB=BC=AA1 , ∠ABC=90°,M是BC的中点.

(1)求证:A1B∥平面AMC1
(2)求平面A1B1M与平面AMC1所成角的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆=1(a>b>0)上的点P到左,右两焦点F1F2的距离之和为2,离心率为.

(1)求椭圆的标准方程;

(2)过右焦点F2的直线l交椭圆于AB两点,若y轴上一点M(0,)满足|MA|=|MB|,求直线l的斜率k的值.

查看答案和解析>>

同步练习册答案