ÒÑÖªµãÁÐB1£¨1£¬y1£©£¬B2£¨2£¬y2£©£¬¡­£¬Bn£¨n£¬yn£©£¬¡­£¨n¡ÊN*£©Ë³´ÎΪֱÏßy=
x
4
Éϵĵ㣬µãÁÐA1£¨x1£¬0£©£¬A2£¨x2£¬0£©£¬¡­£¬An£¨xn£¬0£©£¬¡­£¨n¡ÊN*£©Ë³´ÎΪxÖáÉϵĵ㣬ÆäÖÐx1=a£¨0£¼a£¼1£©£¬¶ÔÈÎÒâµÄn¡ÊN*£¬µãAn¡¢Bn¡¢An+1¹¹³ÉÒÔBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ®
£¨1£©Ö¤Ã÷£ºÊýÁÐ{yn}ÊǵȲîÊýÁУ»
£¨2£©ÇóÖ¤£º¶ÔÈÎÒâµÄn¡ÊN*£¬xn+2-xnÊdz£Êý£¬²¢ÇóÊýÁÐ{xn}µÄͨÏʽ£»
£¨3£©¶ÔÉÏÊöµÈÑüÈý½ÇÐÎAnBnAn+1Ìí¼ÓÊʵ±Ìõ¼þ£¬Ìá³öÒ»¸öÎÊÌ⣬²¢×ö³ö½â´ð£®£¨¸ù¾ÝËùÌáÎÊÌâ¼°½â´ðµÄÍêÕû³Ì¶È£¬·Öµµ´Î¸ø·Ö£©
£¨1£©ÒÀÌâÒâÓÐyn=
n
4
£¬ÓÚÊÇyn+1-yn=
1
4
£®
ËùÒÔÊýÁÐ{yn}ÊǵȲîÊýÁУ®£¨4·Ö£©
£¨2£©ÓÉÌâÒâµÃ
xn+xn+1
2
=n
£¬¼´xn+xn+1=2n£¬£¨n¡ÊN*£©         ¢Ù
ËùÒÔÓÖÓÐxn+2+xn+1=2£¨n+1£©£®¢Ú
ÓÉ¢Ú-¢ÙµÃ£ºxn+2-xn=2£¬ËùÒÔxn+2-xnÊdz£Êý£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡£¨6·Ö£©
ÓÉx1£¬x3£¬x5£¬¡­£»x2£¬x4£¬x6£¬¡­¶¼ÊǵȲîÊýÁУ®x1=a£¨0£¼a£¼1£©£¬x2=2-a£¬ÄÇôµÃ 
 x2k-1=x1+2£¨k-1£©=2k+a-2£¬x2k=x2+2£¨k-1£©=2-a+2£¨k-1£©=2k-a£®£¨k¡ÊN*£©£¨8·Ö£©
¹Êxn=
n+a-1(nΪÆæÊý)
n-a(nΪżÊý)
£¨10·Ö£©
£¨3£©Ìá³öÎÊÌ⣺ÈôµÈÑüÈý½ÇÐÎAnBnAn+1ÖУ¬ÊÇ·ñÓÐÖ±½ÇÈý½ÇÐΣ¬ÈôÓУ¬Çó³öʵÊýa£®
µ±nΪÆæÊýʱ£¬An£¨n+a-1£¬0£©£¬An+1£¨n+1-a£¬0£©£¬ËùÒÔ|AnAn+1|=2£¨1-a£©£»
µ±nΪżÊýʱ£¬An£¨n-a£¬0£©£¬An+1£¨n+a£¬0£©£¬ËùÒÔ|AnAn+1|=2a£»
¹ýBn×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪCn£¬Ôò|BnCn|=
n
4
£¬ÒªÊ¹µÈÑüÈý½ÇÐÎAnBnAn+1Ϊֱ½ÇÈý½ÇÐΣ¬±ØÐëÇÒÖ»Ð룺|AnAn+1|=2|BnCn|£®£¨13·Ö£©
µ±nΪÆæÊýʱ£¬ÓÐ2(1-a)=2¡Á
n
4
£¬¼´a=1-
n
4
¢Ù
¡àµ±n=1 Ê±£¬a=
3
4
£»µ± n=3 Ê±£¬a=
1
4
£¬µ±n¡Ý5£¬a£¼0²»ºÏÌâÒ⣮£¨15·Ö£©
µ±nΪżÊýʱ£¬ÓÐ2a=2¡Á
n
4
£¬a=
n
4
£¬Í¬Àí¿ÉÇóµÃ 
 µ±n=2 Ê±  a=
1
2

µ±n¡Ý4ʱ£¬a£¼0²»ºÏÌâÒ⣮£¨17·Ö£©
×ÛÉÏËùÊö£¬Ê¹µÈÑüÈý½ÇÐÎAnBnAn+1ÖУ¬ÓÐÖ±½ÇÈý½ÇÐΣ¬aµÄֵΪ
3
4
»ò
1
4
»ò
1
2
£®£¨18·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµãÁÐB1£¨1£¬y1£©£¬B2£¨2£¬y2£©£¬¡­£¬Bn£¨n£¬yn£©£¬¡­£¨n¡ÊN*£©Ë³´ÎΪֱÏßy=
x4
Éϵĵ㣬µãÁÐA1£¨x1£¬0£©£¬A2£¨x2£¬0£©£¬¡­£¬An£¨xn£¬0£©£¬¡­£¨n¡ÊN*£©Ë³´ÎΪxÖáÉϵĵ㣬ÆäÖÐx1=a£¨0£¼a£¼1£©£¬¶ÔÈÎÒâµÄn¡ÊN*£¬µãAn¡¢Bn¡¢An+1¹¹³ÉÒÔBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ®
£¨¢ñ£©ÇóÖ¤£º¶ÔÈÎÒâµÄn¡ÊN*£¬xn+2-xnÊdz£Êý£¬²¢ÇóÊýÁÐ{xn}µÄͨÏʽ£»
£¨¢ò£©ÎÊÊÇ·ñ´æÔÚµÈÑüÖ±½ÇÈý½ÇÐÎAnBnAn+1£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªµãÁÐB1£¨1£¬y1£©¡¢B2£¨2£¬y2£©¡¢¡­¡¢Bn£¨n£¬yn£©£¨n¡ÊN£©Ë³´ÎΪһ´Îº¯Êýy=
1
4
x+
1
12
ͼÏóÉϵĵ㣬µãÁÐA1£¨x1£¬0£©¡¢A2£¨x2£¬0£©¡¢¡­¡¢An£¨xn£¬0£©£¨n¡ÊN£©Ë³´ÎΪxÖáÕý°ëÖáÉϵĵ㣬ÆäÖÐx1=a£¨0£¼a£¼1£©£¬¶ÔÓÚÈÎÒân¡ÊN£¬µãAn¡¢Bn¡¢An+1¹¹³ÉÒÔ
BnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ®
£¨1£©Çó{yn}µÄͨÏʽ£¬ÇÒÖ¤Ã÷{yn}ÊǵȲîÊýÁУ»
£¨2£©ÊÔÅжÏxn+2-xnÊÇ·ñΪͬһ³£Êý£¨²»±ØÖ¤Ã÷£©£¬²¢Çó³öÊýÁÐ{xn}µÄͨÏʽ£»
£¨3£©ÔÚÉÏÊöµÈÑüÈý½ÇÐÎAnBnAn+1ÖУ¬ÊÇ·ñ´æÔÚÖ±½ÇÈý½ÇÐΣ¿ÈôÓУ¬Çó³ö´ËʱaÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•ÉϺ£Ä£Ä⣩ÒÑÖªµãÁÐB1£¨1£¬y1£©£¬B2£¨2£¬y2£©£¬¡­£¬Bn£¨n£¬yn£©£¬¡­£¨n¡ÊN*£©Ë³´ÎΪֱÏßy=
x4
Éϵĵ㣬µãÁÐA1£¨x1£¬0£©£¬A2£¨x2£¬0£©£¬¡­£¬An£¨xn£¬0£©£¬¡­£¨n¡ÊN*£©Ë³´ÎΪxÖáÉϵĵ㣬ÆäÖÐx1=a£¨0£¼a£¼1£©£¬¶ÔÈÎÒâµÄn¡ÊN*£¬µãAn¡¢Bn¡¢An+1¹¹³ÉÒÔBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ®
£¨1£©Ö¤Ã÷£ºÊýÁÐ{yn}ÊǵȲîÊýÁУ»
£¨2£©ÇóÖ¤£º¶ÔÈÎÒâµÄn¡ÊN*£¬xn+2-xnÊdz£Êý£¬²¢ÇóÊýÁÐ{xn}µÄͨÏʽ£»
£¨3£©¶ÔÉÏÊöµÈÑüÈý½ÇÐÎAnBnAn+1Ìí¼ÓÊʵ±Ìõ¼þ£¬Ìá³öÒ»¸öÎÊÌ⣬²¢×ö³ö½â´ð£®£¨¸ù¾ÝËùÌáÎÊÌâ¼°½â´ðµÄÍêÕû³Ì¶È£¬·Öµµ´Î¸ø·Ö£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµãÁÐB1£¨1£¬y1£©¡¢B2£¨2£¬y2£©¡¢¡­¡¢Bn£¨n£¬yn£©£¨n¡ÊN£©Ë³´ÎΪһ´Îº¯Êýy=
1
4
x+
1
12
ͼÏóÉϵĵ㣬µãÁÐA1£¨x1£¬0£©¡¢A2£¨x2£¬0£©¡¢¡­¡¢An£¨xn£¬0£©£¨n¡ÊN£©Ë³´ÎΪxÖáÕý°ëÖáÉϵĵ㣬ÆäÖÐx1=a£¨0£¼a£¼1£©£¬¶ÔÓÚÈÎÒân¡ÊN£¬µãAn¡¢Bn¡¢An+1¹¹³ÉÒ»¸ö¶¥½ÇµÄ¶¥µãΪBnµÄµÈÑüÈý½ÇÐΣ®
£¨1£©ÇóÊýÁÐ{yn}2µÄͨÏʽ£¬²¢Ö¤Ã÷{yn}3ÊǵȲîÊýÁУ»
£¨2£©Ö¤Ã÷xn+2-xn5Ϊ³£Êý£¬²¢Çó³öÊýÁÐ{xn}6µÄͨÏʽ£»
£¨3£©ÎÊÉÏÊöµÈÑüÈý½ÇÐÎAn8Bn9An+110ÖУ¬ÊÇ·ñ´æÔÚÖ±½ÇÈý½ÇÐΣ¿ÈôÓУ¬Çó³ö´ËʱaÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•À¶É½ÏØÄ£Ä⣩ÒÑÖªµãÁÐB1£¨1£¬b1£©£¬B2£¨2£¬b2£©£¬¡­£¬Bn£¨n£¬bn£©£¬¡­£¨n¡ÊN?£©Ë³´ÎΪÅ×ÎïÏßy=
1
4
x2Éϵĵ㣬¹ýµãBn£¨n£¬bn£©×÷Å×ÎïÏßy=
1
4
x2µÄÇÐÏß½»xÖáÓÚµãAn£¨an£¬0£©£¬µãCn£¨cn£¬0£©ÔÚxÖáÉÏ£¬ÇÒµãAn£¬Bn£¬Cn¹¹³ÉÒÔµãBnΪ¶¥µãµÄµÈÑüÈý½ÇÐΣ®
£¨1£©ÇóÊýÁÐ{an}£¬{cn}µÄͨÏʽ£»
£¨2£©ÊÇ·ñ´æÔÚnʹµÈÑüÈý½ÇÐÎAnBnCnΪֱ½ÇÈý½ÇÐΣ¬ÈôÓУ¬ÇëÇó³ön£»ÈôûÓУ¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÉèÊýÁÐ{
1
an•(
3
2
+cn)
}µÄÇ°nÏîºÍΪSn£¬ÇóÖ¤£º
2
3
¡ÜSn£¼
4
3
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸