已知定点A(1,0),B (2,0) .动点M满足,
(1)求点M的轨迹C;
(2)若过点B的直线l(斜率不等于零)与(1)中的轨迹C交于不同的两点E、F
(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
(1)(2)(,1)
解析试题分析:(1)先对原函数求导,然后求出斜率,再利用 进行整理即可.
(2)先设方程为 与 联立,结合根与系数的关系以及判别式得到再由
得,即可
(1)由得, ∴.∴直线的斜率为,
故的方程为,∴点A的坐标为(1,0). (2分)
设,则(1,0),,,由
得,整理,得. (4分)
(2)方法一:如图,由题意知的斜率存在且不为零,设方程为 ①,将①代入,整理,得,设,,则②得 (7分)
令, 则,由此可得 ,
,且.∴
由②知 ,.
∴, (10分)
∵,∴,解得 且 (12分)
又∵, ∴,
∴△OBE与△OBF面积之比的取值范围是(,1). (13分)
方法二:如图,由题意知l’的斜率存在且不为零,设l’ 方程为 ①,将①代入,整理,得,设,,则 ② ; (7分)
令, 则,由此可得 , ,且.
∴ &n
科目:高中数学 来源: 题型:解答题
已知椭圆 的离心率为,过的左焦点的直线被圆截得的弦长为.
(1)求椭圆的方程;
(2)设的右焦点为,在圆上是否存在点,满足,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的右焦点为,为上顶点,为坐标原点,若△的面积为,且椭圆的离心率为.
(1)求椭圆的方程;
(2)是否存在直线交椭圆于,两点, 且使点为△的垂心?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆的焦点在轴上, 分别是椭圆的左、右焦点,点是椭圆在第一象限内的点,直线交轴于点,
(1)当时,
(1)若椭圆的离心率为,求椭圆的方程;
(2)当点P在直线上时,求直线与的夹角;
(2) 当时,若总有,猜想:当变化时,点是否在某定直线上,若是写出该直线方程(不必求解过程).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆C:(x-4)2+(y-m)2=16(m∈N*),直线4x-3y-16=0过椭圆E:+=1(a>b>0)的右焦点,且被圆C所截得的弦长为,点A(3,1)在椭圆E上.
(1)求m的值及椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求·的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.
(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;
(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
已知点M是抛物线y2=4x上的一点,F为抛物线的焦点,A在圆C:(x-4)2+(y-1)2=1上,则|MA|+|MF|的最小值为________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com