精英家教网 > 高中数学 > 题目详情

设等差数列{}的前项和为,已知
(Ⅰ) 求数列{}的通项公式;
(Ⅱ)求数列{}的前n项和
(Ⅲ)当n为何值时,最大,并求的最大值.

(Ⅰ)(Ⅱ)(Ⅲ)当时,最大,且的最大值为120.

解析试题分析:(Ⅰ)依题意有,解之得,∴.
(Ⅱ)由(Ⅰ)知,=40,
.
(Ⅲ)由(Ⅱ)有,=-4+121,
故当时,最大,且的最大值为120.
考点:本小题主要考查等差数列中基本量的求解和二次函数求最值在数列中的应用.
点评:等差数列是一类比较重要的数列,它的基本量之间的关系经常考查,要牢固掌握它们之间的关系,灵活求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

等差数列{an}的前n项和为Sn,已知S3=,且S1,S2,S4成等比数列,
(1)求数列{an}的通项公式.
(2)若{an}又是等比数列,令bn= ,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列中,求等差数列的通项公式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是等差数列,且
(Ⅰ)求数列的通项公式;
(Ⅱ)令求数列前n项和的公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,且方程有两个不同的正根,其中一根是另一根的倍,记等差数列的前项和分别为)。
(1)若,求的最大值;
(2)若,数列的公差为3,试问在数列中是否存在相等的项,若存在,求出由这些相等项从小到大排列得到的数列的通项公式;若不存在,请说明理由.
(3)若,数列的公差为3,且.
试证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知等差数列,求的公差
(2)有三个数成等比数列,它们的和等于14,它们的积等于64,求该数列的公比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知公差大于零的等差数列的前n项和为,且满足:
(1)求数列的通项公式
(2)若数列是等差数列,且,求非零常数c;
(3)在(2)的条件下,设,已知数列为递增数列,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的公差,等比数列为公比为,且.
(1)求等比数列的公比的值;
(2)将数列中的公共项按由小到大的顺序排列组成一个新的数列,是否存在正整数(其中)使得都构成等差数列?若存在,求出一组的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列满足:的前n项和为
(Ⅰ)求
(Ⅱ)令bn=(nN*),求数列的前n项和

查看答案和解析>>

同步练习册答案