精英家教网 > 高中数学 > 题目详情
已知集合A={x|-2<x<3},B={x|x2+2x-8>0},则A∩B为(  )
分析:求解一元二次不等式化简集合B,然后直接利用交集运算求解.
解答:解:由A={x|-2<x<3},
B={x|x2+2x-8>0}={x|x<-4或x>2},
∴A∩B={x|-2<x<3}∩{x|x<-4或x>2}={x|2<x<3}.

故选:B.
点评:本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|
x-2ax-(a2+1)
<0},B={x|x<5a+7},若A∪B=B
,则实数a的值范围是
[-1,6]
[-1,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x
log
1
2
(x+2)>-3
x2≤2x+15
,B={x|m+1≤x≤2m-1}

(I)求集合A;
(II)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|0<x2-x≤2},B={x|x2-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+(a+2)x+1=0,x∈R},B={x|lg(x+1)>0},若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+3x-18>0},B={x|x2-(k+1)x-2k2+2k≤0},若A∩B≠∅,求实数k的取值范围.

查看答案和解析>>

同步练习册答案