精英家教网 > 高中数学 > 题目详情

【题目】节能环保日益受到人们的重视,水污染治理也已成为“十三五”规划的重要议题.某地有三家工厂,分别位于矩形ABCD的两个顶点A、B及CD的中点P处,AB=30km,BC=15km,为了处理三家工厂的污水,现要在该矩形区域上(含边界),且与A、B等距离的一点O处,建造一个污水处理厂,并铺设三条排污管道AO、BO、PO.设∠BAO=x(弧度),排污管道的总长度为ykm.
(1)将y表示为x的函数;
(2)试确定O点的位置,使铺设的排污管道的总长度最短,并求总长度的最短公里数(精确到0.01km).

【答案】解:(1)由已知得y=
即y=15+15x(其中
(2)记p=,则sinx+pcosx=2,则有
解得
由于y>0,所以,当x=,即点O在CD中垂线上离点P距离为(15-15)km处,y取得最小值15+15(km)
【解析】(1)直接由已知条件求出AO、BO、OP的长度,即可得到所求函数关系式;
(2)记p= , 则sinx+pcosx=2,求出p的范围,即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示),解答下列问题:

分组

频数

频率

50.5~60.5

4

0.08

60.5~70.5

0.16

70.5~80.5

10

80.5~90.5

16

0.32

90.5~100.5

合计

50


(1)填充频率分布表中的空格;
(2)补全频率分布直方图;
(3)若成绩在80.5~90.5分的学生可以获得二等奖,问获得二等奖的学生约为多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:不等式x﹣x2≤a对x≥1恒成立,命题q:关于x的方程x2﹣ax+1=0在R上有解.
(1)若p为假命题,求实数a的取值范围;
(2)若“p∧q”为假命题,“p∨q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sin(2x+ )+ cos(2x+ ),则(
A.y=f(x)在(0, )单调递增,其图象关于直线x= 对称
B.y=f(x)在(0, )单调递增,其图象关于直线x= 对称
C.y=f(x)在(0, )单调递减,其图象关于直线x= 对称
D.y=f(x)在(0, )单调递减,其图象关于直线x= 对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a14+a15+a16=﹣54,a9=﹣36,Sn为其前n项和.
(1)求Sn的最小值,并求出相应的n值;
(2)求Tn=|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一艘海轮从A出发,沿北偏东75°的方向航行(2 ﹣2)nmile到达海岛B,然后从B出发,沿北偏东15°的方向航行4nmile到达海岛C.
(1)求AC的长;
(2)如果下次航行直接从A出发到达C,求∠CAB的大小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=3sin(x﹣
(1)用五点法做出函数一个周期的图象;
(2)说明此函数是由y=sinx的图象经过怎么样的变化得到的?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,ABCD﹣A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1 , B1C1的中点,P是上底面的棱AD上的一点,AP= ,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}为单调递减的等差数列,a1+a2+a3=21,且a1﹣1,a2﹣3,a3﹣3成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=|an|,求数列{bn}的前项n和Tn

查看答案和解析>>

同步练习册答案