精英家教网 > 高中数学 > 题目详情

【题目】已知直线l1:2x-y+6=0和直线l2:x=-1,F是抛物线C:y2=4x的焦点,点P在抛物线C上运动,当点P到直线l1和直线l2的距离之和最小时,直线PF被抛物线所截得的线段长是________

【答案】20

【解析】

由抛物线的定义知,Pl2的距离等于P到抛物线的焦点F(1,0)的距离.点P到直线l1和直线l2的距离之和最小即转化为点P到点F(1,0)和直线l1的距离之和最小,此时PFl1进而得到直线PF的方程,再由焦点弦的性质得到结果.

直线l2为抛物线y2=4x的准线,由抛物线的定义知,Pl2的距离等于P到抛物线的焦点F(1,0)的距离.点P到直线l1和直线l2的距离之和最小即转化为点P到点F(1,0)和直线l1的距离之和最小,当点P到点F(1,0)和直线l1的距离之和最小时,直线PFl1,从而直线PF方程为y=- (x-1),代入C方程得x2-18x+1=0,所以x1x2=18,从而所求线段长为x1x2p=18+2=20.

故答案为:20.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设不等式mx2-2x-m+1<0对于满足|m|≤2的一切m的值都成立,求x的取值范围.

【答案】

【解析】

令f(m)=m(x2﹣1)﹣2x+1,由条件f(m)0对满足|m|≤2的一切m的值都成立,利用一次函数的单调性可得:f(﹣2)<0,f(2)<0.解出即可.

令f(m)=m(x2﹣1)﹣2x+1,由条件f(m)0对满足|m|≤2的一切m的值都成立,

则需要f(﹣2)<0,f(2)<0.

解不等式组,解得

x的取值范围是

【点睛】

本题考查了一次函数的单调性、一元二次不等式的解法,考查了转化方法,考查了推理能力与计算能力,属于中档题.

型】解答
束】
21

【题目】某厂有一批长为18m的条形钢板,可以割成1.8m和1.5m长的零件.它们的加工费分别为每个1元和0.6元.售价分别为20元和15元,总加工费要求不超过8元.问如何下料能获得最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= , g(x)=asin(x+π)﹣2a+2(a>0),给出下列结论:
①函数f(x)的值域为[0,];
②函数g(x)在[0,1]上是增函数;
③对任意a>0,方程f(x)=g(x)在区间[0,1]内恒有解;
④若x1∈R,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是:≤a≤
其中所有正确结论的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,四边形四边均相等,点在面的射影为中点

(1)证明:

(2),求点到面的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列条件的椭圆的标准方程:

(1)焦点在y轴上,焦距是4,且经过点M(3,2);

(2)ca=5∶13,且椭圆上一点到两焦点的距离的和为26.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四种说法
①在△ABC中,若∠A>∠B,则sinA>sinB;
②等差数列{an}中,a1 , a3 , a4成等比数列,则公比为
③已知a>0,b>0,a+b=1,则+的最小值为5+2
④在△ABC中,已知== , 则∠A=60°.
正确的序号有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线lρsin=4和圆Cρ=2kcos(k≠0),若直线l上的点到圆C上的点的最小距离等于2.求实数k的值并求圆心C的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C:过点,离心率为

(1)求椭圆C的方程;

(2)设斜率为1的直线过椭圆C的左焦点且与椭圆C相交于A,B两点,求AB的中点M的坐标.

查看答案和解析>>

同步练习册答案