半径为1的球面上有三点,其中点与两点间的球面距离均为,两点间的球面距离为,则球心到平面的距离为( )
A. | B. | C. | D. |
B
解析试题分析:根据题意可知:球心O与A,B,C三点构成三棱锥O-ABC,且OA=OB=OC=R=1,∠AOB=∠AOC=90°,∠BOC=60°,故AO⊥面BOC.所以此题可以根据体积法求得球心O到平面ABC的距离. 解:球心O与A,B,C三点构成三棱锥O-ABC,如图所示,
已知OA=OB=OC=R=1,∠AOB=∠AOC=90°,∠BOC=60°,由此可得AO⊥面BOC.∵S△BOC=,S△ABC=.
∴由VA-BOC=VO-ABC,得 h=.故选B.
考点:点到面的距离, 球面距离
点评:本小题主要考查立体几何球面距离及点到面的距离、三棱锥的结构等基础知识,考查运算求解能力,考查空间想象力.属于基础题
科目:高中数学 来源: 题型:单选题
平行四边形ABCD中,·=0,沿BD折成直二面角A一BD-C,且4AB2 +2BD2 =1,则三棱锥A-BCD的外接球的表面积为( )
A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com