【题目】如图甲所示的平面五边形中,,,,,,现将图甲所示中的沿边折起,使平面平面得如图乙所示的四棱锥.在如图乙所示中
(1)求证:平面;
(2)求二面角的大小;
(3)在棱上是否存在点使得与平面所成的角的正弦值为?并说明理由.
【答案】(1)证明见解析;(2);(3)存在,理由见解析.
【解析】
(1)推导出AB⊥AD,AB⊥平面PAD,AB⊥PD,PD⊥PA,由此能证明PD⊥平面PAB;
(2)取AD的中点O,连结OP, OC,由知OC⊥OA,以为坐标原点,OC所在的直线为x轴,OA所在的直线为y轴建立空间直角坐标系,利用向量法能求出二面角A-PB-C的大小;
(3)假设点M存在,其坐标为(x, y, z),BM与平面PBC所成的角为,则存在λ∈(0, 1),有,利用向量法能求出在棱PA上满足题意的点M存在.
(1)∵,,,
∴,
∴,
∵平面平面,平面平面,
∴平面,
又∵平面,
∴,
又∵,,
∴平面.
(2)取的中点,连结,,
由平面平面知平面,
由知,
以为坐标原点,所在的直线为轴,所在的直线为轴建立空间直角坐标系
如图所示,
则易得,,,,,
设平面的法向量为,
由,得,
令得,,
∴,
设二面角大小为,
则,
∵,
∴二面角的大小.
(3)假设点存在,其坐标为,与平面所成的角为,
则存在,有,
即,,
则,
从而化简得,
解得
∵,
∴
∴在棱上满足题意的点存在.
科目:高中数学 来源: 题型:
【题目】为了判断英语词汇量与阅读水平是否相互独立,某语言培训机构随机抽取了100位英语学习者进行调查,经过计算的观测值为7,根据这一数据分析,下列说法正确的是( )
附:
0.050 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
A.有99%以上的把握认为英语词汇量与阅读水平无关
B.有99.5%以上的把握认为英语词汇量与阅读水平有关
C.有99.9%以上的把握认为英语词汇量与阅读水平有关
D.在犯错误的概率不超过1%的前提下,可以认为英语词汇量与阅读水平有关
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着社会的发展与进步,传播和存储状态已全面进入数字时代,以数字格式存储,以互联网为平台进行传输的音乐——数字音乐已然融入了我们的日常生活.虽然我国音乐相关市场仍处在起步阶段,但政策利好使音乐产业逐渐得到资本市场更多的关注.对比如下两幅统计图,下列说法正确的是( )
2011-2018年中国音乐产业投融资事件数量统计图
2013-2021年中国录制音乐营收变化及趋势预测统计图
A.2011~2018年我国音乐产业投融资事件数量逐年增长
B.2013~2018年我国录制音乐营收与音乐产业投融资事件数量呈正相关关系
C.2016年我国音乐产业投融资事件的平均营收约为亿美元
D.2013~2019年我国录制音乐营收年增长率最大的是2018年
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com