精英家教网 > 高中数学 > 题目详情

设函数f(x)=+ax-lnx(a∈R).
(Ⅰ)当a=1时,求函数f(x)的极值;
(Ⅱ)当a≥2时,讨论函数f(x)的单调性;
(Ⅲ)若对任意及任意∈[1,2],恒有成立,求实数m的取值范围.

(Ⅰ),无极大值;(Ⅱ)当时,单调递减 ,当时,单调递减,在上单调递增;(Ⅲ)

解析试题分析:(Ⅰ)当时,求函数的极值,只需对函数求导,求出导数等零点,及在零点两边的单调性,注意, 求函数的极值不要忽略求函数的定义域;(Ⅱ)讨论函数的单调性,只需判断的导数在区间上的符号,因此,此题先求导,在判断符号时,发现参数的取值对有影响,需对参数讨论,分,与两种情况,从而确定单调区间;(Ⅲ)对任意及任意∈[1,2],恒有成立,只需求出的最大值即可.
试题解析:(Ⅰ)函数的定义域为,当时, 令,当时,;当时,单调递减,在单调递增,,无极大值 ;
(Ⅱ)
,①当时,上是减函数,②当,即时,令,得,令,得
综上,当时,单调递减 ,当时,单调递减,在上单调递增;
(Ⅲ)由(Ⅱ)知,当时,上单调递减,当时,有最大值,当时,有最小值, ,
经整理得 
考点:函数与导数,导数与函数的单调性、导数与函数的极值,导数与不等式的综合应用,考查学生的基本推理能力,考查学生的基本运算能力以及转化与化归的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,且.
(1)求函数的表达式;
(2)当时,不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,求的单调区间;
(2)当,且时,求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若对一切恒成立,求的最大值;
(2)设,且是曲线上任意两点,若对任意,直线的斜率恒大于常数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,曲线在点处的切线是 
(Ⅰ)求的值;
(Ⅱ)若上单调递增,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理)已知函数f(x)= -lnx,x∈[1,3].
(Ⅰ)求f(x)的最大值与最小值;
(Ⅱ)若f(x)<4-At对于任意的x∈[1,3],t∈[0,2]恒成立,求实数A的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,设曲线在与轴交点处的切线为的导函数,满足
(1)求
(2)设,求函数上的最大值;
(3)设,若对于一切,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0,函数.
(1)若,求函数的极值,
(2)是否存在实数,使得成立?若存在,求出实数的取值集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为实数,函数
(Ⅰ)求的单调区间与极值;
(Ⅱ)求证:当时,

查看答案和解析>>

同步练习册答案