【题目】已知a<2,函数f(x)=(x2+ax+a)ex.
(1)当a=1时,求f(x)的单调递增区间;
(2)若f(x)的极大值是6e-2,求a的值.
【答案】(1)的单调增区间是(2)
【解析】
(1)定义域为R,或所以的单调增区间为(2)或故-2,-a有可能是的极值点,列表判断出时取得极大值且极大值是列方程求出a.函数的单调性与导数,函数的极值
试题解析:(1)当a=1时,f(x)=(x2+x+1)ex,∴f′(x)=(x2+3x+2)ex.
由f′(x)≥0,得x2+3x+2≥0,解得x≤-2或x≥-1.
∴f(x)的单调递增区间是(-∞,-2],[-1,+∞).
(2)f′(x)=[x2+(a+2)x+2a]ex.由f′(x)=0,得x=-2或x=-a.
∵a<2,∴-a>-2.
当x变化时,f′(x),f(x)变化情况列表如下:
∴x=-2时,f(x)取得极大值.而f(-2)=(4-a)·e-2,
∴(4-a)e-2=6×e-2.∴a=-2.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧面底面,底面是平行四边形, , , , 为的中点,点在线段上.
(Ⅰ)求证: ;
(Ⅱ)试确定点的位置,使得直线与平面所成的角和直线与平面所成的角相等.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在,,,,,单位:克中,其频率分布直方图如图所示.
Ⅰ按分层抽样的方法从质量落在,的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;
Ⅱ以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:
A.所有蜜柚均以40元千克收购;
B.低于2250克的蜜柚以60元个收购,高于或等于2250克的以80元个收购.
请你通过计算为该村选择收益最好的方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:
①样本方差反映的是所有样本数据与样本平均值的偏离程度;
②某校高三一级部和二级部的人数分别是m、n,本次期末考试两级部数学平均分分别是a、b,则这两个级部的数学平均分为
③某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查,现将800名学生从001到800进行编号,已知从497--512这16个数中取得的学生编号是503,则初始在第1小组00l~016中随机抽到的学生编号是007.
其中命题正确的个数是( )
A.0个 B.1个 C.2个 D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a<2,函数f(x)=(x2+ax+a)ex.
(1)当a=1时,求f(x)的单调递增区间;
(2)若f(x)的极大值是6e-2,求a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com