精英家教网 > 高中数学 > 题目详情

【题目】连续抛掷同一颗骰子3次,则3次掷得的点数之和为9的概率是____

【答案】

【解析】

利用分步计数原理,连续拋掷同一颗骰子3次,则总共有:6×6×6=216种情况,再列出满足条件的所有基本事件,利用古典概型的计算公式计算可得概率.

每一次拋掷骰子都有123456,六种情况,

由分步计数原理:连续抛掷同一颗骰子3次,则总共有:6×6×6=216种情况,

3次掷得的点数之和为9的基本事件为25种情况即:

(1,2,6)(1,3,5)(1,4,4)(1,5,3)(1,6,2)

(2,1,6)(2,2,5)(2,3,4)(2,4,3)(2,5,2)(2,6,1)

(3,1,5)(3,2,4)(3,3,3)(3,4,2)(3,5,1)

(4,1,4)(4,2,3)(4,3,2)(4,4,1)

(5,1,3)(5,2,2)(5,3,1)

(6,1,2)(6,2,1),共25个基本事件,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为平行四边形,平面.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,垂直于所在的平面的直径,是弧上的一个动点(不与端点重合),上一点,且是线段上的一个动点(不与端点重合).

(1)求证:平面

(2)若是弧的中点,是锐角,且三棱锥的体积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一枚质地均匀的硬币连掷次,设事件恰好两次正面朝上,

1)直接计算事件的概率;

2)利用计算器或计算机模拟试验80次,计算事件发生的频率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知点在椭圆上,将射线绕原点逆时针旋转,所得射线交直线于点.以为极点,轴正半轴为极轴建立极坐标系.

(1)求椭圆和直线的极坐标方程;

(2)证明::中,斜边上的高为定值,并求该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北. 湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区.在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记.由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验.在某普查小区,共有 50 家企事业单位,150 家个体经营户,普查情况如下表所示:

普查对象类别

顺利

不顺利

合计

企事业单位

40

50

个体经营户

50

150

合计

1)写出选择 5 个国家综合试点地区采用的抽样方法;

2)补全上述列联表(在答题卡填写),并根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;

3)根据该试点普查小区的情况,为保障第四次经济普查的顺利进行,请你从统计的角度提出一条建议.

附:

0.10

0.010

0.001

2.706

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】华中师大附中中科教处为了研究高一学生对物理和数学的学习是否与性别有关,从高一年级抽取60,名同学(男同学30名,女同学30名),给所有同学物理题和数学题各一题,让每位同学自由选择一道题进行解答.选题情况如下表:(单位:人)

(1)在犯错误的概率不超过1%是条件下,能否判断高一学生对物理和数学的学习与性别有关?

(2)经过多次测试后发现,甲每次解答一道物理题所用的时间5—8分钟,乙每次解答一道物理题所用的时间为6—8分钟,现甲、乙解同一道物理题,求甲比乙先解答完的概率;

(3)现从选择做物理题的8名女生中任意选取两人,对题目的解答情况进行全程研究,记甲、乙两女生被抽到的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是R上的偶函数,对于都有成立,且,当,且时,都有.则给出下列命题:

函数图象的一条对称轴为

函数在[﹣9,﹣6]上为减函数;方程在[﹣9,9]上有4个根;

其中正确的命题序号是___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,分别过椭圆左、右焦点的动直线相交于点,与椭圆分别交于不同四点,直线的斜率满足, 已知轴重合时, .

1)求椭圆的方程;

2)是否存在定点使得为定值,若存在,求出点坐标并求出此定值,若不存在,

说明理由.

查看答案和解析>>

同步练习册答案