精英家教网 > 高中数学 > 题目详情
由y=x2,y=x所围成的图形绕y轴旋转所得到的旋转体的体积V=
 
考点:用定积分求简单几何体的体积
专题:计算题,导数的概念及应用
分析:求出曲线y=x2与直线y=x交点O、A的坐标,结合旋转体的积分计算公式,可得所求旋转体的体积等于函数y=π(y-y2)在[0,1]上的积分值,再用定积分计算公式加以计算即可得到该旋转体的体积.
解答: 解:∴曲线y=x2与直线y=x交于点O(0,0)和A(1,1)
∴根据旋转体的积分计算公式,可得
该旋转体的体积为V=
1
0
π(y-y2)dy=π(
1
2
y3-
1
3
y3
|
1
0
=
π
6

故答案为:
π
6
点评:本题给出曲线y=x2与直线y=x所围成的平面图形,求该图形绕y轴转一周得到旋转体的体积.着重考查了利用定积分公式计算由曲边图形旋转而成的几何体体积的知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知2|
AB
|=|
BC
|=4,|
AC
|=3,设O为△ABC的内心,且
AO
AB
BC
,则λ+μ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax-5+1(a>0,且a≠1)过定点(n,m),则二项式(y+m)n的展开式中y2的系数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验,借鉴其原理,我们也可以采用计算机随机数模拟实验的方法来估计π的值:先由计算机产生1200对0~1之间的均匀随机数x,y;再统计两个数能与1构成钝角三角形三边的数对(x,y)的个数m;最后再根据统计数m来估计π的值,假如统计结果是m=940,那么可以估计π≈
 
(精确到0.001)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ecosx(-π≤x≤π)的大致图象为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,P为AB的中点,求二面角B-CA1-P的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,AD∥BC,∠ABC=90°,M是PD的中点,且AD=2AB=2BC=2.
(1)证明:CM∥平面PAB.
(2)求二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|log2x|+1(a≠0),定义函数F(x)=
f(x),x>0
f(-x),x<0
,给出下列命题:
①F(x)=|f(x)|;
②函数F(x)是偶函数;
③当a<0时,若0<m<n<1,则有F(m)-F(n)<0成立;
④当a>0时,函数y=F(x)-2有4个零点.
其中正确命题的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x||x|<1},B={x|x2-2x<0},则A∩B=(  )
A、(-1,2)
B、(0,1)
C、(0,2)
D、(1,2)

查看答案和解析>>

同步练习册答案