精英家教网 > 高中数学 > 题目详情

【题目】如图:在五面体中,四边形是正方形,

(1)证明:为直角三角形;

(2)已知四边形是等腰梯形,且,求五面体的体积.

【答案】(1)详见解析;(2).

【解析】分析:(1)先利用线面垂直的判定定理字母线面垂直,进而得到线线垂直,再利用线线平行的性质进行证明;(2)将该几何体的体积转化为一个四棱锥和一个三棱锥的体积之和,再利用垂直关系确定几何体的高线,利用体积公式进行求解.

详解:(1)证明:由已知得平面,且

所以平面.

平面,所以.

又因为,所以,即为直角三角形.

(2)解:连结.

,又因为平面,所以

,所以平面,则是四棱锥的高.

因为四边形是底角为的等腰梯形,

所以,.

因为平面,所以平面,则是三棱锥的高.

.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调区间;

2)若函数只有一个零点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆)与抛物线:的一个公共点,且椭圆与抛物线具有一个相同的焦点

(Ⅰ)求椭圆及抛物线的方程

(Ⅱ)设过且互相垂直的两动直线与椭圆交于两点,与抛物线交于两点,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数若函数存在5个零点,则实数的取值范围为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)证明:函数在区间存在唯一的极小值点,且

(2)证明:函数于有且仅有两个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为,(为参数),圆的标准方程为.以坐标原点为极点, 轴正半轴为极轴建立极坐标系.

(1)求直线和圆的极坐标方程;

(2)若射线与的交点为,与圆的交点为,且点恰好为线段的中点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率,且椭圆的短轴长为2.

(1)球椭圆的标准方程;

(2)已知直线过右焦点,且它们的斜率乘积为,设分别与椭圆交于点.

①求的值;

②设的中点的中点为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一种鱼的身体吸收汞,一定量身体中汞的含量超过其体重的1.00ppm(即百万分之一)的鱼被人食用后,就会对人体产生危害.30条鱼的样本中发现的汞含量(单位:ppm)如下:

0.07 0.24 0.95 0.98 1.02 0.98 1.37 1.40 0.39 1.02

1.44 1.58 0.54 1.08 0.61 0.72 1.20 1.14 1.62 1.68

1.85 1.20 0.81 0.82 0.84 1.29 1.26 2.10 0.91 1.31

1)请用合适的统计图描述上述数据,并分析这30条鱼的汞含量的分布特点;

2)求出上述样本数据的平均数和标准差;

3)从实际情况看,许多鱼的汞含量超标的原因是这些鱼在出售之前没有被检测过你认为每批这种鱼的平均承含量都比1.00ppm大吗?

4)在上述样本中,有多少条鱼的汞含量在以平均数为中心、2倍标准差的范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆经过伸缩变换后得到曲线以坐标原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线的极坐标方程为

(1)求曲线的直角坐标方程及直线的直角坐标方程;

(2)设点上一动点,求点到直线的距离的最大值.

查看答案和解析>>

同步练习册答案