精英家教网 > 高中数学 > 题目详情
设椭圆的方程为=1(a>b>0),斜率为1的直线不经过原点O而与椭圆相交于A、B两点,M为线段AB的中点.直线AB与OM能否垂直?证明你的结论.

解:设A(x1,y1),B(x2,y2),M(m,n),

∴x1+x2=2m,y1+y2=2n,

两式相减,得

=0,

因为=1,

所以.

假设AB⊥OM,则kABkOM=-1,得a2=b2,这与已知矛盾,所以不能垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知水平地面上有一篮球,在斜平行光线的照射下,其阴影为一椭圆(如图),在平面直角坐标系中,O为原点,设椭圆的方程为
x2
a2
+
y2
b2
=1
(a>b>0),篮球与地面的接触点为H,则|OH|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设椭圆的方程为
x2
a2
+
y2
b2
=1
(a>b>0),线段PQ是过左焦点F且不与x轴垂直的焦点弦.若在左准线上存在点R,使△PQR为正三角形,求椭圆的离心率e的取值范围,并用e表示直线PQ的斜率.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省聊城市某重点中学高二(上)第四次模块检测数学试卷(理科)(解析版) 题型:解答题

已知椭圆┍的方程为+=1(a>b>0),点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足=+),求点M的坐标;
(2)设直线l1:y=k1x+p交椭圆┍于C、D两点,交直线l2:y=k2x于点E.若k1•k2=-,证明:E为CD的中点;
(3)对于椭圆┍上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆┍上存在不同的两个交点P1、P2满足+=,写出求作点P1、P2的步骤,并求出使P1、P2存在的θ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年上海市高考数学试卷(理科)(解析版) 题型:解答题

已知椭圆┍的方程为+=1(a>b>0),点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足=+),求点M的坐标;
(2)设直线l1:y=k1x+p交椭圆┍于C、D两点,交直线l2:y=k2x于点E.若k1•k2=-,证明:E为CD的中点;
(3)对于椭圆┍上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆┍上存在不同的两个交点P1、P2满足+=,写出求作点P1、P2的步骤,并求出使P1、P2存在的θ的取值范围.

查看答案和解析>>

同步练习册答案