精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-3x+2,设函数F(x)=
(1)求F(x)的表达式;
(2)若m+n=0,mn<0试判断F(m)与F(n)的大小关系,并说明理由;
(3)解不等式2≤F(x)≤6.
【答案】分析:(1)利用已知解析式,即可求得F(x)的表达式;
(2)由m+n=0,mn<0可知n=-m,利用(1)的结论,即可判断F(m)与F(n)的大小关系;
(3)利用解析式,可得不等式,解不等式,即可得出结论.
解答:解:(1)由题意,x>0,F(x)=f(x)=x2-3x+2;x<0,则F(x)=f(-x)=x2+3x+2,
∴F(x)=…(2分)
(2)由m+n=0,mn<0可知n=-m,不妨设m>0,则n<0
所以F(m)=m2-3m+2,F(n)=F(-m)=m2-3m+2,
从而得到F(m)=F(n)…(4分)
(3)当x<0时,解不等式2≤x2+3x+2≤6,解得-4≤x≤-3;…(7分)
当x≥0时,解不等式2≤x2-3x+2≤6,解得x=0或3≤x≤4…(10分)
综合得不等式的解为:{x|-4≤x≤-3,或x=0,或3≤x≤4}…(12分)
点评:本题考查函数的解析式,考查解不等式,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案